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Biofilms provide an ecological advantage against many environmental

stressors, such as pH and temperature, making it the most common life-

cycle stage for many bacteria. These protective characteristics make eradica-

tion of bacterial biofilms challenging. This is especially true in the health

sector where biofilm formation on hospital or patient equipment, such as

respirators, or catheters, can quickly become a source of anti-microbial resis-

tant strains. Biofilms are complex structures encased in a self-produced poly-

meric matrix containing numerous components such as polysaccharides,

proteins, signalling molecules, extracellular DNA and extracellular RNA.

Biofilm formation is tightly controlled by several regulators, including quo-

rum sensing (QS), cyclic diguanylate (c-di-GMP) and small non-coding

RNAs (sRNAs). These three regulators in particular are fundamental in all

stages of biofilm formation; in addition, their pathways overlap, and the sig-

nificance of their role is strain-dependent. Currently, ribonucleases are also

of interest for their potential role as biofilm regulators, and their relation-

ships with QS, c-di-GMP and sRNAs have been investigated. This review

article will focus on these four biofilm regulators (ribonucleases, QS, c-di-

GMP and sRNAs) and the relationships between them.

Bacterial lifestyle is dependent on environmental con-

ditions and the bacterial capacity to adapt to ecosys-

tems. Biofilms are a form of bacterial social behaviour

that involves the formation of aggregates of one or

more species, which confer extra protection when

microbes encounter harsh environments. Biofilms can

be attached to a living or non-living surface [1], and

the sessile lifestyle promotes genetic and metabolic

diversification of microorganisms [2]. In the biofilm

form, bacterial cells are embedded in a self-produced

polymeric matrix consisting of polysaccharides,

proteins, signalling molecules, extracellular DNA

(eDNA), extracellular RNA (eRNA), and other com-

ponents [3–5]. The biofilm matrix is largely dependent

on its bacterial species and provides structural stability

and protection to the biofilm [3,6,7]. The composition

of the biofilm matrix also affects the microenviron-

ment, since it determines the biophysical and biochem-

ical properties of the biofilm [3,5,6]. Biofilms with

mixed-species are predominant in most environments,

but single-species biofilms are more common in infec-

tions and on the surface of medical implants [8].
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The formation of biofilms depends on the bacterial

species’ and/or the nutritional conditions [9,10], and it

is mostly driven by adaptive responses to environmen-

tal conditions [11]. This process usually follows a bio-

logical cycle that includes attachment, growth,

maturation and detachment of the biofilm (Fig. 1)

[5,8]. It begins with the reversible attachment of plank-

tonic cells to a surface suitable for growth [1,10] fol-

lowing the detection of environmental conditions that

trigger a sessile lifestyle [8]. This is followed by (a) irre-

versible attachment of the cells, (b) growth and (c) the

formation of microcolonies surrounded by the biofilm

polymeric matrix [3,10]. These initial attachment

phases include cell-cell and cell-surface interactions

that allow the development of the biofilm [5]. As the

bacterial colonies expand, the microorganism occupies

the non-colonised spaces and covers the entire surface

[8]. When nutrients are scarce or waste products accu-

mulate, the last step of the cycle starts and bacteria

begin to detach from the surface [11]. This can be

achieved by (a) downregulating the production of bio-

film matrix components, (b) secretion of matrix-

degrading enzymes or (c) disruption of non-covalent

interactions between matrix compounds [11–13].
Finally, some cells disperse from the sessile structure

in a planktonic fashion to colonise other surfaces.

Biofilms are extremely difficult to eradicate since

they are a community of bacteria engulfed by a protec-

tive matrix. This is especially problematic for human

health since the biofilms have a higher tolerance to

antibiotics. The reduced penetration of antimicrobial

agents into biofilms, the occurrence of persister cells,

reduced growth and biofilm-specific protective stress

responses all contribute to the observed increased tol-

erance [6,14,15]. Considering that medical devices such

as catheters and implants are a major source of infec-

tions due to biofilm attachment [16], it is essential to

understand the regulatory mechanisms that lead to the

formation of biofilms, so that we can develop novel

strategies to fight biofilm-related infections.

This review will focus on the regulation of biofilms

by RNA regulatory mechanisms [small non-coding

RNAs (sRNAs) and ribonucleases (RNases)], quorum

sensing (QS) and cyclic diguanylate (c-di-GMP), all of

which are important for all stages of biofilm forma-

tion, in particular, to the initial steps. Furthermore,

the possible links between these regulators will be

explored.

RNA regulatory mechanisms that
affect biofilm formation

The switch from planktonic to biofilm formation is a

complex process and is dependent on RNA regulators.

There are two classes of RNA regulators that are

known to control the formation of biofilms: sRNAs

and RNases.

sRNAs are regulatory molecules that control gene

expression in cells; several examples of sRNAs that

regulate biofilms are already known. On the other

hand, RNases are enzymes that process and degrade

all types of RNA, but they are less studied as biofilm

regulators.

Small non-coding RNAs

In their natural habitats or in an infection context,

bacteria are constantly exposed to different environ-

mental conditions and stress exposure. To detect, sur-

vive and respond to stress, several bacterial

Fig. 1. Schematic representation of biofilm

formation. Biofilm formation starts with

the initial reversible attachment of

bacterial cells to a surface. This is

followed by the growth of the biofilm

within a matrix, maturation of the biofilm,

and finally, when the environment

conditions cease to be ideal, the reversal

of the attachment with the dispersion of

the cells that will colonize other surfaces.

The biofilm extracellular (EC) matrix is

composed of polysaccharides (green),

eDNA (purple), eRNA (blue), proteins (red)

and signalling molecules (yellow).
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mechanisms have evolved to regulate gene expression.

sRNAs are regulatory elements that control physiolog-

ical and metabolic processes and are involved in

responses to different stress conditions, such as starva-

tion, hypoxia, antibiotic treatment and high salinity,

among others [17–19]. sRNAs are important regulators

of gene expression in bacteria, influencing, either posi-

tively or negatively, mRNAs and proteins. When they

bind to target transcripts they connect by sequence

complementarity, which leads to changes in mRNA

translation, stability or both. In fact, base-pairing

between sRNAs and their target mRNAs modifies the

accessibility of RNases and/or ribosome binding sites,

thereby influencing gene expression [20,21]. The action

of sRNAs often depends on the RNA chaperone Hfq

that can facilitate and stabilize the interactions

between the sRNAs and their target mRNAs [20,22].

Hfq has pleiotropic effects, and it is decisive for many

sRNA-mediated regulation pathways, as its deletion

affects the stress response, virulence, and biofilms in

several bacteria [23,24]. Some of these non-coding

RNAs are also able to interact with proteins, altering

their function/conformation or blocking their binding

sites to other nucleic acids [25]. It is increasingly evi-

dent that sRNAs play an important role in pathways

of biofilm formation, reprogramming gene expression

profiles to promote the transition between a planktonic

and a surface-associated lifestyle, and vice versa

(Table 1) [26,27].

The Escherichia coli sRNAs CsrB and CsrC seques-

ter and inhibit the CsrA protein [28,29]. CsrA is a key

negative regulator of biofilm formation, since it sup-

presses the synthesis of the polysaccharide adhesin

poly-N-acetylglucosamine (PNAG), and simulta-

neously stimulates motility by promoting the expres-

sion of FlhDC, an important regulator of flagellum

biosynthesis (Fig. 2) [30–32]. As expected, deletion

mutants of these two sRNAs in E. coli K12 lead to a

decrease in biofilm formation since the levels of CsrA

are higher [29,32].

The Csr regulatory system is highly conserved

among many pathogenic bacteria, including

Pseudomonasaeruginosa, Salmonella Typhimurium and

Yersinia pseudotuberculosis, where it controls biofilm for-

mation and virulence mechanisms [33–35]. Surprisingly, a
recent study comparing E. coli C and E. coli K12 discov-

ered that the levels of CsrB and CsrC are much higher in

the K12 strain than in the C strain [36]. This is an appar-

ent contradiction, since E. coli C is naturally much more

prone to produce biofilms than the E. coli K12 strains

and, as such, it would be expected that the levels of these

sRNAs would be higher in the C strain. In fact, the

authors found that in E. coli C, there is no compensatory

regulation similar to the one that exists between CsrB and

CsrC in E. coli K12 strains [36]. This difference between

two E. coli strains is a clear example that although the

same systems are conserved among bacteria it should not

be assumed that their function is equal. In P. aeruginosa,

the Csr system is called the Rsm system, and it also regu-

lates the switch between motility and acute infection to

sessile lifestyle and chronic infection [33,37,38]. Similar to

its its E. coli homolog (CsrA), RsmA promotes motility,

influencing acute infection by positively affecting the

expression of the type III secretion system (T3SS) [39].

Furthermore, RsmA seems to repress the production of

exopolysaccharides Pel and Psl, which are fundamental

components of P. aeruginosa biofilm [39,40]. For the

establishment of chronic infection, the sRNAs RsmY and

RsmZ are fundamental as they sequester RsmA, promot-

ing exopolysaccharide synthesis and inhibiting T3SS pro-

duction [41–43]. This, in turn, leads to the production of

type VI secretion system (T6SS) and biofilm formation as

seen in cystic fibrosis (CF) patients [44,45]. Other sRNAs

of P. aeruginosa involved in biofilm formation have also

been described [46–48]. SrbA is an sRNA that is found

upregulated in P. aeruginosa strain PA14 biofilm cultures,

and its deletion results in a 66% reduction in biofilm mass

[49]. Similarly, it has also been observed that RgsA sRNA

expression is increased in biofilm and that its deletion

makes P. aeruginosa PAO1 more susceptible to oxidative

stress, suggesting it has an important role in the high resis-

tance to this stress frequently observed in bacterial bio-

films [46,50]. ErsA is an sRNA that appears to be

involved in the response to envelope stress, which is a

pathway that is often related to virulence and biofilm

development [37,51]. This sRNA negatively regulates the

expression of the AlgC enzyme, which participates in the

biosynthesis of various polysaccharides including alginate,

Pel, Psl, LPS, and rhamnolipids, all of which are essential

components of the biofilm of P. aeruginosa [52]. In this

way, ErsA promoted motility, having a relevant role in

P. aeruginosa pathogenicity during acute infection and in

the stimulation of the host inflammatory response [53].

The exopolysaccharide Cepacian, present in biofilms,

is a very important component for the efficiency of the

infections detected in CF since it protects the bacterial

pathogens from antimicrobial treatment and increases

their virulence [54,55]. Several sRNAs have been

shown to be relevant for virulence and biofilm forma-

tion in Burkholderia cenopacia, an opportunistic patho-

gen also responsible for several persistent lung

infections. In B. cenopacia, Sass and colleagues identi-

fied 123 putative sRNAs that are differentially

expressed during biofilm formation. The majority of

sRNAs were found to be more abundant in biofilms

than in B. cenopacia planktonic cells [56]. The ncS35
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sRNA is perhaps the most characterized in this bacte-

rium and is upregulated in biofilm forms that grow in

minimal medium. The deletion of ncS35 increased the

B. cenopacia susceptibility to tobramycin, and pro-

moted metabolic activity and the alteration of the bio-

film structure, making the bacteria more vulnerable to

stress conditions [57].

Streptococcus mutans is another microorganism with

high relevance regarding biofilm production. This bac-

terium is the main causative agent of dental caries in

humans, and the formation of biofilm is the virulent

property that underlies the well-known dental plaque

on tooth surfaces [58]. It was demonstrated that some

sRNAs have a positive role in the colonization and

biofilm formation of S. mutans, thus contributing to

its pathogenicity. The S. mutans sRNA0426 sRNA is

overexpressed in biofilms and it is positively correlated

with exopolysaccharide production. It was observed

that the increase in sRNA0426 may be related with

the upregulation of three predicted mRNA targets

(GtfB, GtfC, and CcpA) which are involved in the

synthesis of exopolysaccharides [59]. Additionally,

through deep-sequencing RNA, it was found that reg-

ulation by sRNAs may play a role in the adhesion of

S. mutans, with a total of 736 candidate sRNAs differ-

entially expressed during this process. From this work,

two sRNAs (sRNA0187 and sRNA0593) stood out,

and their differential expression was confirmed in clini-

cal isolates of S. mutans [60].

However, there are also sRNAs, which have an

opposite action and stimulate motility/repress biofilm

formation under specific conditions [26,27]. In E. coli,

the transcriptional regulator CsgD is a key player in

the complex regulatory circuit that decides whether

Table 1. Examples of sRNAs involved in the formation of biofilms and bacterial pathogenicity.

sRNA Organism Target

Effect on

Target Phenotype References

CsrB,

CsrC

Escherichia coli CsrA Repression Biofilm formation. motility inhibition [28,29]

McaS CsgD Repression Curli synthesis decrease. Flagella synthesis

promotion

[62]

RprA Repression Adhesive curli fimbriae downregulation [63]

OmrA/

OmrB

Repression Curli synthesis decrease [64]

GcvB Repression Biofilm formation inhibition [65]

RydC Repression Curli synthesis decrease. Biofilm formation

inhibition

[66]

RybB Repression Biofilm formation inhibition [67]

DsrA RpoS Activation EPS synthesis promotion. Antibiotic

resistance

[176]

GlmY/

GlmZ

Enterohemorrhagic

Escherichia coli (EHEC)

LEE4/LEE5 Repression Expression of curli adhesin. Biofilm

formation

[177,178]

DicF PchA Activation Host colonization. Virulence amplification [179]

PapR Uropathogenic Escherichia coli

(UPEC)

PapI Repression Inhibition of host tissue adhesion [180]

ErsA Pseudomonas aeruginosa AlgC Repression EPS synthesis downregulation. Biofilm

formation inhibition

[52]

RsmY,

RsmZ

RsmA Repression EPS synthesis [43]

HmsB Yersinia pestis HmsHFRS, HmsD,

HmsT

Activation c-di-GMP and EPS increase. Biofilm

formation

[148]

sRNA0426 Streptococcus mutans GtfB, GtfC, CcpA Activation EPS synthesis. Biofilm formation [59]

Teg41 Staphylococcus aureus aPSM Activation aPSM toxin upregulation [181]

RNAIII a-hemolysin Activation Exotoxin upregulation [182]

Coa, Rot Repression Tissue adhesion dowregulation [183, 184]

RsaA MgrA Repression Cell surface protein expression. Biofilm

formation

[71]

LhrC Listeria monocytogenes LapB, OppA, TcsA Repression Host immune response evasion [185–187]

InvS Salmonella enterica serovar

Typhimurium

PrgH Activation Invasion of epithelial cells [188]

InvS FimZ Repression Invasion of epithelial cells [188]
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bacteria form biofilms, since it is necessary for produc-

tion of curli fimbriae and for the downregulation of

several flagellate biosynthesis genes [61]. The expres-

sion of csgD mRNA is regulated at the translational

level by at least seven Hfq-dependent sRNAs (McaS,

RprA, OmrA/OmrB, GcvB, RydC and RybB), which

are activated in response to different environmental/

stress conditions [62–67].
Staphylococcus aureus is an opportunistic human

pathogen capable of leading to bacterial infections in

the skin, respiratory tract, and other tissues [68–70].
RsaA sRNA promotes chronic persistence, biofilm for-

mation and expression of cell surface proteins of

S. aureus. The main target of RsaA is the mgrA

mRNA, and RsaA binds to the Shine-Dalgarno and

coding sequence. In this manner, it prevents the for-

mation of the ribosomal initiation complex [71]. In

turn, MgrA is a protein that inhibits biofilm formation

by suppressing the expression of surface proteins and

the release of eDNA [72].

The involvement of sRNAs in the formation of bio-

films and pathogenicity has also been described in

other microorganisms, such as Listeria monocytogenes,

and Helicobacter pylori, among others (as previously

reviewed in [68,73–75]).

Ribonucleases

Ribonucleases are enzymes involved in RNA proces-

sing and degradation mechanisms [76]. They are

divided into two main classes: exoribonucleases, which

cleave RNA one nucleotide at a time, from one

extremity and endoribonucleases, which cleave RNA

internally. As RNA degrading enzymes they affect the

levels of all RNA molecules in the cells, ultimately

influencing all cellular processes, including biofilm for-

mation. Thus, they can be considered/explored in the

future as novel anti-biofilm targets [77]. However, only

a few very specific examples have been described and

their role in controlling biofilms must be further

explored.

Oligoribonuclease (Orn) is a 30 to 50 exoribonuclease
highly conserved in bacteria, but the study of its

involvement in biofilms is limited to P. aeruginosa, in

which it was found that a deletion mutant for Orn

cannot degrade 5-phosphoguanylyl-(30–50)-guanosine
(pGpG) [78,79]. pGpG is the result of c-di-GMP deg-

radation and there is a feedback loop between pGpG

and c-di-GMP. High levels of pGpG leads to the inhi-

bition of the degradation of c-di-GMP, resulting in the

accumulation of this second messenger and therefore

affecting biofilm formation [80]. Exoribonucleases

analogous to Orn (NrnA, NrnB, and NrnC) in

Bacillus anthracis and Vibrio cholerae (a Gram-

negative bacterium that causes cholera) were also

shown to affect biofilm formation by hydrolysing

pGpG [81].

RNase Y, an endoribonuclease, was also found

to affect biofilm formation in Bacillus subtilis and

Clostridium perfringens [82,83]. In B. subtilis,

Fig. 2. Schematic representation of the

Csr regulatory system and its influence on

biofilm formation. The protein CsrA

stimulates motility by promoting the

expression of FlhDC and suppresses the

synthesis of the polysaccharide adhesin

PNAG. CsrB and CsrC sRNAs sequester

and inhibit the CsrA protein, leading to a

decrease in bacterial motility and the

promotion of biofilm formation.
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transcriptomic data showed that RNase Y deletion

leads to the repression of more than 350 transcripts

from biofilm-related pathways. Moreover, overex-

pression of RNase Y induced biofilm formation in

spotted agar plates [82]. This effect of RNase Y in

B. subtilis biofilm is probably because this enzyme

degrades sinR, which is a repressor of the biofilm

matrix genes [84]. In C. perfringens, RNase Y

affects biofilm formation since it stabilizes pilA2 (a

pilin component of the type IV pili), which is

involved in cell attachment [83]. Deletion of RNase

Y in C. perfringens decreased attachment of cells to

surfaces, and consequently affected biofilm forma-

tion [83].

In Mycobacterium tuberculosis, there is an endoribo-

nuclease, Rv2872, that is also a toxic protein from a

toxin-antitoxin (TA) system. RNA-Seq data showed

that RV2872 affects several transcripts involved in bio-

film formation; however, it appears that the effect on

biofilms is due to the TA system and not its ribonucle-

ase activity [85].

RNase I is an endoribonuclease of the RNase T2

superfamily and was found to affect E. coli biofilm

formation since it degrades cytoplasmic RNA to gen-

erate 20,30-cNMPs [86]. Using a transposon mutagene-

sis analysis, another study reported that deletion of an

RNase T2 family protein affected the ability of

Acinetobacter baumannii to attach to surfaces, there-

fore impairing biofilm formation [87].

RNase J2 has both an exoribonucleolytic and endor-

ibonucleolytic activity and was found to affect the

expression of the ebpABC operon that encodes pili

proteins that play a major role in biofilm formation in

Enterococcus faecalis [88].

The exoribonucleases RNase II, RNase R and

PNPase were also found to affect biofilm formation in

E. coli, but while deletion of RNase II and RNase R

increase the ability of E. coli to form biofilms, the

deletion of PNPase completely abolished the capacity

of this bacterium to form biofilms [89], as demon-

strated by quantification using the crystal violet

method. The exact mechanisms by which these exori-

bonucleases impact on E. coli biofilms are still not

known, but transcriptomic data showed that several

motility, flagellum and biofilm transcripts are signifi-

cantly altered in the absence of these enzymes [89,90].

In S. Typhimurium, the PNPase deletion mutant was

also found to form less biofilm than the wild-type, but

surprisingly, the RNase II mutant formed even less

biofilm than the PNPase mutant [91]. Furthermore,

the endoribonucleases RNase E and RNase III also

seem to affect biofilm formation in S. Typhimurium

[91], and although the mechanism underlying this

phenotype is not known, it has been reported that

RNase E affects QS in Sinorhizobium meliloti [92],

opening a pathway to be further explored. These dif-

ferences observed might suggest that the effects of

RNases in biofilm formation are dependent on the

studied microorganism.

Several studies showed that RNases affect biofilm

production, but most studies simply demonstrated a

phenotypic result, and the underlying mechanism by

which this occurs is still not understood.

Quorum sensing

Quorum-sensing is a mechanism of cell-to-cell commu-

nication used by bacteria and involves the production

and release of signalling molecules termed autoindu-

cers (AIs). The concentration of signalling molecules

increases with bacterial population density. When a

minimal threshold concentration of these AIs is

reached, bacteria respond by regulating population

behaviour, such as with virulence and/or biofilm for-

mation [93].

Biofilm formation induction by QS signals depends

largely on the bacterial species present in each biofilm.

QS systems differ in terms of the chemical classes to

which the QS molecules belong: the acyl homoserine

lactones (AHLs), furanosyl borate diesters (AI2), cis-

unsaturated fatty acids (DSF family signals) and pep-

tides [13,94]. A QS system is comprised of a synthase

that produces the autoinducer and the receptor for

that specific inducer.

Bacteria usually have more than one QS system; for

instance P. aeruginosa has three QS systems (las, rhl

and pqs) that are interconnected [95] and S. aureus has

the Agr system and the luxS gene that produces AI-2

[13]. However, high concentrations of AIs do not

always induce the formation of biofilms. In fact, there

are two distinct types of response: the positive, where at

high cell density AIs accumulate and bacteria respond

by forming biofilms, and the negative response that

occurs when AIs accumulation represses biofilm forma-

tion [96].

P. aeruginosa is one of the most well-studied organ-

isms in terms of the effects of QS in biofilm formation.

This bacterium responds positively to the AI concen-

tration in the environment, meaning that high levels of

signalling molecules will promote biofilm formation.

These signalling molecules were found to affect the

production of several components of the biofilm

matrix, such as the polysaccharide Pel and Psl [97,98],

rhamnolipids [99] and eDNA [100].

Vibrio cholerae also has three QS molecules: CAI-1

((S)-3-hyroxytridecan-4-one) synthesized by CqsA,
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AI-2 synthesized by LuxS, and DPO, synthesized by

Tdh [101]. In contrast with observations made for

P. aeruginosa, high levels of these AIs will repress the

formation of V. cholerae biofilm. The QS systems of

V. cholerae are greatly interconnected with sRNAs

and this will be further described in Interconnections

between the key biofilm regulators of this review.

In S. aureus, there are two main QS regulatory sys-

tems: (a) the accessory gene regulator (Agr) system

and, (b) the LuxS system. The S. aureus Agr system

controls the biofilm detachment process by promoting

the expression of several small amphipathic peptides

[102,103]. This system is controlled by an RNA regula-

tor, the RNAIII sRNA [104]. Both the Agr QS com-

ponents and RNAIII are in the same chromosome

region and under the control of the P2 promoter [105].

The Agr regulon is comprised of several hundred genes

and most of these are indirectly regulated via RNAIII

[104,106]. Agr has different, important roles in biofilms

as it can control virulence determinants, including reg-

ulation of S. aureus toxins [107], and can have an

impact on acute infection and toxicity [108]. The LuxS

system is less studied, but there is also evidence that it

impacts on the expression of biofilm genes essential for

exopolysaccharide biosynthesis [109]. Furthermore,

in vitro and in vivo studies showed that luxS can con-

trol S. aureus biofilm growth through the icaR locus

[110].

Due to the importance of QS in biofilms, there are

several therapeutic approaches proposed for targeting

it [108,111,112].

C-di-GMP

The secondary messenger bis(30,50)-cyclic diguanylic

acid (c-di-GMP) is ubiquitous in nature. It has a role

in several bacterial signaling pathways, and its pleotro-

pic action impacts a diverse set of cellular players. In

particular, there is a well-established link between c-di-

GMP signaling, bacterial virulence and biofilm forma-

tion. Over the years, insightful studies have shown that

c-di-GMP is involved in the spread of bacteria in the

host, evasion/subversion of immune defense mecha-

nisms and in the colonization of tissues [113]. Changes

in c-di-GMP levels were shown to allow/facilitate the

transition between bacterial lifestyles, where an

increase in c-di-GMP level correlates with a switch

from an active, fast-spreading and motile lifestyle to a

slow-growing biofilm lifestyle [114]. During this pro-

cess, the presence of c-di-GMP promotes the biosyn-

thesis of adhesins and exopolysaccharides, and inhibits

processes related to motility such as the functioning of

the flagellar motor [115].

Intracellular levels of c-di-GMP are maintained by

two types of enzymes: the diguanylate cyclases

(DGCs), which synthesize c-di-GMP from two GTP

molecules, and the phosphodiesterases (PDEs) that

degrade c-di-GMP in pGpG. While the GGDEF con-

served domain is essential for DGC enzymatic func-

tion, PDE activity is mainly attributed either to their

EAL or HD-GYP domains [114,116]. Given their

determinant control over c-di-GMP levels, DGCs and

PDEs play an important role in biofilm formation and

virulence of bacteria [117–122]. For instance, deletion

of the gene for BifA, a PDE expressed in both

P. aeruginosa and Pseudomonas putida, results in

severe defects in motility and a hyperbiofilm pheno-

type given the general increase in c-di-GMP levels

[123,124]. In some Pseudomonas species, WspR is a

DGC that enhances the synthesis of c-di-GMP and

suppresses the T3SS, leading to increased exopolysac-

charide production that is readily observed by the for-

mation of wrinkly colonies [118,125,126]. The

suppression of T3SS also leads to the upregulation of

T6SS, which is associated with biofilm formation and

chronic infections of P. aeruginosa [45]. In

P. aeruginosa, c-di-GMP also acts on Alg44, FleQ and

PelD proteins, regulating the synthesis of alginate, Pel

and Pls polysaccharides. These exopolysaccharides are

important for the formation of the extracellular matrix

of bacteria, acting as a shield against antibiotics

[40,122,127,128]. Alginate is particularly relevant in

persistence of P. aeruginosa in several diseases includ-

ing CF, contributing to pathogenic roles such as inhi-

bition of phagocytosis, suppression of neutrophil

chemotaxis and scavenging of oxidative radicals

[129,130].

In E. coli K-12, YddV and YdeH are two DGCs

that are necessary for the expression of PNAG, an

exopolysaccharide that is present in a wide variety of

bacteria biofilms [131,132]. In particular, the expres-

sion of YdeH is upregulated in response to antibiotics,

leading to a strong biofilm induction [132]. Further-

more, the YhjH PDE plays an important role in

adherent-invasive E. coli in Crohn disease, by promot-

ing flagellar function and type 1 pili synthesis, and

thereby enabling the invasion of the host’s intestinal

epithelial cells [133]. In this bacterium it was also

described that the transcription factor BolA controls

the expression of several DGCs and PDEs, thereby

affecting the levels of c-di-GMP and consequently bio-

film formation [134]. It was shown that the balance

between these two factors is important for the accurate

regulation of the transition between the planktonic

and sessile lifestyles. This balance is achieved by

negative-feedback regulation of BolA and c-di-GMP.
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However, even in the presence of elevated c-di-GMP

levels, biofilm formation is reduced in the absence of

BolA [134].

In humans, V. cholerae causes cholera by colonizing

the small intestine and secreting cholera toxin (CT)

[135]. During infection by this bacteria, c-di-GMP sig-

naling plays an important role in virulence, since low

intracellular levels of this molecule promote the pro-

duction of CT. It was observed that, during this pro-

cess, the PDE VieA is required to keep the

concentration of c-di-GMP low, and thus enhance col-

onization in an animal model of infection [136]. More-

over, VpsT, a transcription factor and a master

regulator of biofilm formation in V. cholerae is

affected by high levels of c-di-GMP [137,138]. Biofilm

formation is of particular importance for this bacte-

rium since it allows the colonization of humid environ-

ments, as well as resistance to low pH and chemical

stress [139].

Klebsiella pneumoniae is an opportunistic Gram-

negative bacterium, whose pathogenicity increases with

the ability to form biofilms, which in turn promotes

microbial colonization of host tissues [140]. The tran-

scription factor MrkH regulates the production of type

3 fimbriae, a organelle that allows adherence to human

endothelial and urinary bladder cells [141]. MrkH-

mediated expression of type 3 fimbriae is enhanced by

the presence of c-di-GMP [142]. Moreover, c-di-GMP

promotes the expression of MrkH, creating positive

feedback that stimulates the formation of biofilms in

K. pneumoniae [143].

Additionally, some DGCs and PDEs which are enzy-

matically inactive can recognize c-di-GMP and function

only as effectors of this secondary messenger. For

instance, Pseudomonas fluorescens expresses LapD, an

inner-membrane protein required for biofilm formation

and the maintenance of the adhesin LapA. Secretion of

LapA is dependent on the binding of c-di-GMP to the

degenerate EAL domain of LapD, determining the sur-

face commitment of P. fluorescens [144].

Various effectors, from enzymes to transcription fac-

tors, which are directly or indirectly involved in bio-

film formation, are sensitive to changes in c-di-GMP

levels [113]. The PilZ family of proteins is the best

described group of c-di-GMP effectors, since the PilZ

domain was the first to be identified as binding specifi-

cally to c-di-GMP [145,146]. In E. coli and

Salmonella enterica, YcgR, a PilZ domain protein,

impairs motility in response to high levels of c-di-

GMP. Under these conditions, YcgR interacts with

the flagellar switch-complex proteins, reducing the

motor function, thereby facilitating the transition from

motile to a sessile/biofilm lifestyle [147,148]. Another

PilZ domain protein of E. coli is BcsA, which upon c-

di-GMP binding, stimulates the synthesis of cellulose,

a common component of this bacteria biofilm [149].

However, it is important to bear in mind that not all

c-di-GMP effectors possess a PilZ domain [150].

The broad range of mechanisms by which c-di-GMP

affects biofilm formation is due to its capacity to bind

to several proteins allosterically and change their struc-

ture and/or function. Alternatively, c-di-GMP can also

interact with nucleic acids, such as mRNA or small

regulatory RNA molecules, to regulate gene expression

at a post-transcriptional level [116].

Interconnections between the key
biofilm regulators

There are relevant data concerning the link between

three of the main regulators of biofilms (QS, c-di-

GMP and sRNA), but the link between exoribonu-

cleases and the other regulators has not yet been

explored in depth.

Vibrio cholerae provides a good example of inter-

connection between QS, sRNAs and c-di-GMP. As

mentioned above, in this microorganism there are

three QS systems, and high levels of AI repress biofilm

formation. This occurs because at low levels of CAI-1

and AI-2, the QS receptors (CqsS, CqsR, LuxPQ and

VpsS) act as kinases and promote the phosphorylation

of the LuxO response regulator. In this phosphory-

lated state, LuxO activates four small regulatory

RNAs (Qrr sRNAs), which promote the expression of

genes necessary for biofilm formation [13,101]. When

the cell density increases with a consequent increase in

AIs, the QS receptors conversely act as phosphatases;

LuxO is subsequently dephosphorylated, which thereby

represses biofilm formation and causes V. cholerae to

disperse from the existing biofilms [13,101]. At high

cell density, the DPO autoinducer also binds to the

VqmA receptor, which in turn activates the expression

of the sRNA VqmR that represses biofilm formation

[101]. Moreover, the repression of biofilm formation

by these high levels of AIs occurs through an extensive

network of genes, including 14 genes encoding proteins

that synthesize and degrade c-di-GMP [151].

There are many examples of connections between

two regulators of biofilm formation, but the intercon-

nection of sRNAs and QS is the most well studied. For

example, deletion of the Agrobacterium tumefaciens

sRNA AbcR1 promotes the import of Gamma-

aminobutyric acid (GABA) that in turn promotes the

degradation of the QS signal N-(3-oxo-octanoyl) homo-

serine lactone [152]. In P. aeruginosa the sRNA PhrS

binds to the short upstream open reading frame of the
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pqsR gene, stimulating its translation and increasing

the synthesis of quinolone signal molecules [153]. Fur-

thermore, E. coli microarray data suggests that the

CyaR sRNA negatively regulates luxS, and this was

experimentally validated by northern blot [154]. QS can

also regulate sRNAs. For instance, the sRNA MicA is

close to the genomic location of the luxS gene in

S. Typhimurium, and deletion of luxS CDS leads to a

significant decrease in the levels of this sRNA [155].

There are several other examples of the interconnection

of sRNAs and QS systems, which have been extensively

reviewed in [156].

There are also several studies linking sRNAs and c-

di-GMP. For example, the sRNAs CsrB and CsrC reg-

ulate the protein CsrA that binds to mRNAs of the

DGCs, ycdT and ydeH, repressing their translation

and decreasing c-di-GMP levels [131]. Similarly, in

P. putida RsmA, which is regulated by two sRNAs,

RsmY and RsmZ, was shown to affect c-di-GMP

levels through the response regulator CfcR [157]. More

complex regulation occurs during the biofilm develop-

ment of Yersinia pestis, a bacterial agent that causes

bubonic plague, using fleas as a vector [158]. In this

microorganism the existence of a stable extracellular

biofilm matrix enhances bacterial aggregation before

the bacteria spread through the host skin and lym-

phatic systems. The hmsHFRS, hmsD, hmsT and hmsP

genes encode the major factors involved in biofilm for-

mation of Y. pestis [158]. The first is an operon

responsible for biosynthesis and translocation of bio-

film matrix exopolysaccharide. HmsD and HmsT are

DGCs responsible for the synthesis of c-di-GMP, and

HmsP is a PDE that degrades c-di-GMP [158,159].

Interestingly, the HmsB sRNA regulates all these fac-

tors, stimulating the expression of hmsHFRS, hmsD

and hmsT, and inhibiting the expression of hmsP. This

leads to increased production of c-di-GMP and exopo-

lysaccharides, making HmsB one of the main activa-

tors of biofilm formation in Y. pestis [148].

Additionally, c-di-GMP also affects the expression of

sRNAs; for example, in Dickeya dadantii, a plant

pathogen, a mutation of the DGC gcpA resulted in

increased RNA levels of the RsmB sRNA [160].

Another example is found in V. cholerae where the

putative sRNA P1-Vc2 was found to be increased in

direct proportion with c-di-GMP levels [161]. The

interconnection between sRNA and c-di-GMP may be

much more widespread than is currently believed, since

Hfq was found to affect the levels of c-di-GMP in

Y. pestis and D. dadantii [162,163]. Since most sRNAs

depend on Hfq to bind to their targets there might be

a link between Hfq, sRNAs and c-di-GMP that is yet

to be explored. A recent review on Hfq relationship

with c-di-GMP showed that there are several avenues

of research that need to be pursued to uncover these

complex regulatory systems.

Another relationship that needs to be considered is

the connection of RNases with c-di-GMP and QS sys-

tems. In fact, the exoribonuclease PNPase is known to

be activated by c-di-GMP [164] and it is possible that

the regulation of biofilm by this exoribonuclease

(described in Ribonucleases) is correlated with c-di-

GMP. Moreover, PNPase affects sRNA metabolism

[165,166] and it is also possible that the effects

observed in the absence of this enzyme are due to its

role on sRNAs that control biofilm formation. Similar

to PNPase, RNase E is also known to degrade several

sRNAs, and most notably it degrades both CsrB and

CsrC, indirectly affecting c-di-GMP levels [167]. Addi-

tionally, the Orn regulates c-di-GMP levels in several

organisms since it is involved in pGpG metabolism

[78,79,81]. There is at present not much information

regarding the connection of RNases with QS systems.

It is known that RNase E and RNase J affect the

S-adenosylmethionine (SAM) methyl donor which is

involved in the AHLs QS system in S. meliloti [168].

The exact mechanism by which they affect QS in this

organism is still not fully understood, but RNase

E also degrades sinI, a gene encoding the acyl-

homoserine lactone synthase [92]. Another example

linking QS with RNases involves the TA modules.

Several toxins from these TA also have endoribonu-

cleolytic activity, namely MazF, ChpBK and MqsR

toxins. In E. coli, activity of both MazF and ChpBK

is stimulated by the QS pentapeptides NNWNN

(which are called EDFs-extracellular death factors)

[169], and the EDFs also enhance the activity of MazF

in M. tuberculosis [170]. MqsR is induced by the AI-2

QS signal [171], but it is not known how this affects

its endoribonucleolytic activity.

In addition to the above, much is known regarding

the connection of the QS with the c-di-GMP regula-

tory machinery. Kozlova et al. showed that the link of

QS systems with c-di-GMP is relevant for the regula-

tion of virulence in Aeromonas hydrophila [172]. The

authors showed that c-di-GMP overproduction modu-

lated the transcriptional levels of genes involved in

biofilm formation and motility phenotype in a QS-

dependent way that involved the AI-1 and AI-2 sys-

tems. In a different study, c-di-GMP was observed to

induce expression of aphA in V. cholerae [173]. aphA is

an activator of virulence gene expression and an

important QS regulator [174]. These two biofilm regu-

lators have been extensively studied, and a more com-

prehensive analysis of their connection can be

reviewed in [175].
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Recently, we have published an extensive review of

the latest antibacterial and antibiofilm strategies [77].

Most novel strategies being developed target QS and

c-di-GMP, due to limited understanding of how RNA

regulators may be harnessed for biofilm control. It is

however clear that the four regulators highlighted in

this review have interconnected roles in biofilm forma-

tion (Fig. 3) and these complex interactions should be

taken into consideration when developing new strate-

gies for biofilm disruption.

Concluding remarks

Biofilms are complex structures that give bacteria a

great advantage to survive under stress conditions. In

fact, biofilms are the predominant lifestyle for most bac-

teria, and this has serious consequences for human

health since the protective characteristics of biofilms

make it hard to efficiently eradicate biofilm-related

infections. This is particularly troubling in hospital set-

tings where the growth of biofilms in medical devices

frequently leads to the emergence of multidrug resis-

tance strains. It is therefore essential to develop novel

strategies to fight bacteria when they exist in these com-

munities, highlighting the importance of studying the

regulatory mechanism behind biofilm formation. In this

review, we gave a small overview of the current knowl-

edge on the three main regulators of biofilms: sRNAs,

QS and c-di-GMP. Additionally, we also examined a

lesser-known RNA regulator of biofilms, the RNases, to

bring attention to this avenue of research exploring their

impact on biofilm formation. There is sufficient evidence

suggesting these regulators are interconnected and oper-

ate in consortium to promote bacterial life-cycle

changes, as illustrated in Fig. 3. Further research in this

area will hopefully further elucidate the how these regu-

lators relate to each other. This will promote the discov-

ery of innovative anti-biofilm therapeutics that surpass

the effect of existing antimicrobial compounds.
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Fig. 3. Schematic representation of the

important regulators of biofilm formation.

QS, c-di-GMP, sRNAs and RNases all have

an impact on biofilm formation. The

connections among all these regulators

leads to the promotion or repression of

bacterial biofilms and is also important for

the maintenance of mature biofilms.
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