Review

Occupational Exposure to Mycotoxins: Current Knowledge and Prospects

Susana Viegas,1,2* Carla Viegas1,2 and Anne Oppliger3

1H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon 1990-096, Portugal; 2Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, New University of Lisbon, Lisbon 1600-560, Portugal; 3Institute for Work and Health, University of Lausanne, Lausanne CH-1015, Switzerland

*Author to whom correspondence should be addressed. Tel: +351 21 898 0422; e-mail: susana.viegas@estesl.ipl.pt

Submitted 19 January 2018; revised 28 May 2018; editorial decision 8 June, 2018; revised version accepted 12 July 2018.

Abstract

Occupational exposure to mycotoxins is supposedly very frequent, but it is rarely reported in the scientific literature. Several recent studies described occupational exposure to the aflatoxin B1 (AFB1) mycotoxin in different occupational settings. Previously, exposure to other mycotoxins was shown in the animal husbandry and food processing sectors, confirming that occupational exposure cannot be negligible. However, no guidelines or standard methodologies are available for helping occupational hygienists to consider mycotoxin exposure in their interventions. This article reviews the literature on this problem and recommends some actions for the better management of this risk factor in occupational settings, especially where environmental conditions are favorable to fungal presence.

Keywords: exposure assessment; fungi metabolites; occupational risk factor; organic dust

Introduction

Workers in numerous sectors are exposed to organic dust originating from such diverse organic matter as soil, plants, animals, food, and fecal matter. This dust contains lots of different bacteria and fungi and their components such as endotoxins and glucans. Furthermore, some fungi can actively produce secondary metabolites called mycotoxins.

Some mycotoxins can have serious human health effects when ingested, but their health effects following inhalation or dermal contact are insufficiently documented. Occupational assessments of biological risks in workplaces usually include the monitoring of bioaerosols in the air. This measurement of airborne biological agents usually only includes an estimation of the concentration of cultivable bacteria and fungi and sometimes a measurement of endotoxin concentrations. Indeed, guidances and recommendations for occupational exposure limits exist mainly for these three contaminants. Although some researchers have started to measure biological substances with potential impact in human health, such as mycotoxins, in the workplace, the measurement has never been done routinely.
The goals of this review are to take stock of the current knowledge about occupational exposure to mycotoxins and to discuss the important things to consider when performing an occupational risk assessment of activities that may result in exposure to mycotoxins.

2.5

What is a mycotoxin? What are the most common? What are the fungi responsible for their production?

2.10
Mycotoxins are fungi metabolites produced by specific fungal genera, primarily Aspergillus, Penicillium, Alternaria, Fusarium, and Claviceps (Bennett and Klich, 2003; Marin et al., 2013). Mycotoxin molecules are small and stable, with a low molecular mass. To date, more than 300 mycotoxins have been identified; more will surely be discovered in the near future. Only 30 of these mycotoxins have been subjected to research aimed at highlighting their toxic proprieties (Surai et al., 2008).

A specific fungal species may produce several different mycotoxins due to the influence of various types of environmental stress (Halstensen, 2008).

As reviewed in Halstensen (2008), mycotoxins can be present in the environment even in the absence of any visible fungi since they can resist adverse environmental factors such as high or low temperatures and can persist long after the death and disintegration of the fungal species responsible for their production. They are also difficult to eliminate or inactivate from the source even after being exposed to temperatures such as boiling or roasting processes (Peraica et al., 1999).

Aflatoxin B1 (AFB1) is perhaps the most hazardous mycotoxin found in agricultural products since it is an hepatocarcinogenic, inducing DNA adducts leading to genetic changes in target liver cells (Chen et al., 1997; Vines and Xun, 2009). It has been found on grains, peanuts, and other human and animal foodstuffs (Rocha et al., 2014).

Aspergillus flavus and Aspergillus parasiticus are the most common species associated with aflatoxin contamination. However, recently, additional species of section Flavi (closely related species that cannot be clearly distinguished morphologically) have been reported to be responsible for aflatoxin production (Varga et al., 2015; Lamoth, 2016). Contamination can occur naturally on crops or after incorrect storage and/or process conditions. The dust generated during the handling of these products can also contain AFB1 (Brera et al., 2002).

Besides aflatoxin, the other relevant groups of mycotoxins found in food are the following: ochratoxin A produced by both Aspergillus and Penicillium; sterigmatocystin produced by Aspergillus; trichothecenes (type A: HT-2 and T-2 toxin; type B: deoxynivalenol), zearalenone, fumonisins B1 and B2, and the emerging mycotoxins (fusaproliferin, moniliformin, beauvericin, and enniatins) produced mainly by Fusarium species; ergot alkaloids produced by Claviceps; and altenuene, alternariol, alternariol methyl ether, altetroxin, and tenuazonic acid produced by Alternaria species (Bottalico and Logrieco, 1998; Barkai-Golan and Paster, 2008; Marin et al., 2013). Some of these toxigenic genera (Aspergillus and Penicillium) are commonly found on assessments done to moisture-damaged buildings (Viegas et al., 2015).

Particular attention should be given to these mycotoxins since, currently, they are unregulated and were shown to occur frequently in agricultural products. The evidence of their incidence is rapidly increasing and gaps in toxicological knowledge have been identified for several compounds not allowing a proper risk assessment (Gruber-Dorninger et al., 2017).

Routes of exposure

Occupational routes of exposure to mycotoxins are inhalation and dermal contact.

Most mycotoxins are not volatile. However, mycotoxins can be present in airborne dust (Flannigan, 1987; Brera et al., 2002) and in the fungal spores and fragments (Brasel et al. 2005; Huttunen and Korkalainen, 2017). Therefore, airborne dust, spores, and hyphae fragments can act as carriers of mycotoxins to the lungs (Brasel et al. 2005; Huttunen and Korkalainen, 2017) and potentially, exposure in occupational settings occurs essentially via inhalation, particularly in the form of airborne dust (Brera et al., 2002; Lavicoli et al., 2002; Mayer et al., 2007; Mayer, 2015; Viegas et al., 2016).

Moreover, dermal contact could also be a frequent route of workplace exposure, especially where workers without protection have to handle contaminated materials such as food. This is particularly relevant in occupational settings where the use of short-sleeved clothes is possible or when hands are in contact with solutions containing mycotoxins (Degen, 2008; Boonen et al., 2012; Viegas et al., 2016). Moreover, dust particles containing mycotoxins can be deposited in the skin promoting dermal absorption. Additionally, work surfaces contaminated with dust particles can also be touched creating opportunities for further skin contact (Boonen et al., 2012).

Health effects

Several factors influence the severity of the disease caused by mycotoxins exposure, namely the toxicity of the mycotoxin, the exposure route, the extent of exposure (duration and intensity), the age and nutritional...
status of the individual, and the potential synergistic effects with other chemicals, including other mycotoxins, to which the individual has been exposed (Peraica et al., 1999).

Although effects on human health are well known via the ingestion of contaminated food, very few studies have investigated the health effects of mycotoxins via inhalation or dermal contact.

The symptoms and effects attributed to the inhalation of mycotoxins are mucous membrane irritation, skin rash, nausea, immune system suppression, acute or chronic liver damage, acute or chronic central nervous system damage, endocrine effects, and cancer (Olsen et al., 1988; Huttunen and Korkalainen, 2017). Pestka et al. (2008) also suggested that the toxicity of trichothecenes might be a reason for many of the adverse effects of S. chartarum.

Concerning systemic effects, several mycotoxins have caused human health effects following exposure via inhalation. For instance, there is some evidence that inhalation of AFB1 can cause lung cancer (Dvoráková, 1976; Dvoráková and Píchová, 1986; Hayes et al., 1984; Olsen et al., 1988). The mechanism behind its carcinogenicity in the lung is suggested to be oxidative DNA damage (Guindon-Kezis et al., 2014; Huttunen and Korkalainen, 2017). Inhalation of ochratoxin (OTA) has been linked to acute renal failure and respiratory distress in workers exposed to Aspergillus producers of OTA in a granary (Di Paolo et al., 1994). OTA has been found in the sinonasal tissue and mucus of 22% of chronic rhinosinusitis patients, and in the urine of 83% of patients suffering from chronic fatigue syndrome (Brewer et al., 2013).

Moreover, it is important to note that some studies have demonstrated that the inhalation of some mycotoxins can be more harmful than oral exposure due to the health effects that can be caused in the respiratory system (Creasia et al., 1990; Amuzie et al., 2008; Degen, 2011).

Evidence from air or surface metrology studies

Dust containing mycotoxins is released during tasks involving high exposure to organic dust, such as storage work, loading, handling, or milling contaminated materials (grain, waste, and feed), and others such as caring for animals in animal husbandry settings. Animal feed processing plants are particularly risky for mycotoxin exposure since the authorized level of concentration in this type of food is 10 times higher than it is for human food. As example, the maximum levels authorized for deoxynivalenol in unprocessed maize is 1750 µg kg⁻¹ while it is 750 µg kg⁻¹ in cereals intended for direct human consumption (Pinotti et al., 2016).

Specific environmental and ecological conditions—temperature, relative humidity, availability of nutrients, and use of fungicides—can enhance or limit fungal growth and dissemination. In 2015, Mayer made an extensive review aiming to identify previously reported incidents of occupational mycotoxin exposure (Mayer, 2015, 2016).

Table 1 summarizes the results of measurements performed in specific workplaces. To the best of our knowledge, 15 studies reported occupational exposure to mycotoxins between 1981 and 2017. The articles were dedicated to settings related to animal husbandry, farming, or food and feed processing. After 2000, the number of articles increased and the focus changed from studying one mycotoxin at a time to studying several mycotoxins across the same sample. This was probably due to the development of analytical resources allowing the characterization of occupational exposure to several mycotoxins simultaneously. All the studies demonstrated the presence of mycotoxins in working environments and therefore the possibility for workers to be exposed to mycotoxins via inhalation or dermal contact.

Evidence from biomonitoring studies

One study, carried out in India, showed that aflatoxins were significantly more frequently detected in the serum of food-grain workers than in the urine of a control group suggesting an occupational exposure (Malik et al., 2014). In Egypt, concentrations of serum aflatoxin were significantly higher in workers exposed to wheat (mills
Table 1. Results of measurements performed in these specific workplaces.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Country</th>
<th>Occupational setting</th>
<th>Investigated mycotoxin(s)</th>
<th>Season</th>
<th>Sampling details</th>
<th>Method</th>
<th>Matrix</th>
<th>Main findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autrup et al. (1991)</td>
<td>Denmark</td>
<td>Animal feed production</td>
<td>Aflatoxin B1 (AFB₁)</td>
<td>No data available</td>
<td>Dust samples collected at selected sites in factories</td>
<td>ELISA</td>
<td>Dust samples (0.9 mg)</td>
<td>Dust samples presented high levels at one site (8 μg kg⁻¹ dust); companies’ efforts to reduce levels of AFB₁ in raw materials and to encapsulate the work process will reduce exposure significantly</td>
</tr>
<tr>
<td>Selim et al. (1998)</td>
<td>United States</td>
<td>Farms handling grain</td>
<td>AFB₁</td>
<td>No data available</td>
<td>24 samples of airborne dust collected during animal feeding; 14 samples from 11 farms during bin cleaning; 14 samples of settled dust, and 18 samples of bulk corn</td>
<td>HPLC LOD = 1 ng</td>
<td>Airborne dust, settled dust, and samples of bulk corn</td>
<td>Detection of AFB₁ in airborne dust during harvesting, grain loading and unloading, bin cleaning, and animal feeding operations provided evidence that farmers could be exposed to potentially hazardous levels of AFB₁. The majority (70%) of wheat grain and settled dust samples presented notable quantities of fusarium toxins; ochratoxin was found in 60% of both kinds of samples</td>
</tr>
<tr>
<td>Krysińska-Traczyk et al. (2001)</td>
<td>Poland</td>
<td>Farms</td>
<td>Moniliformin, deoxynivalenol (DON), nivalenol, and ochratoxin</td>
<td>No data available</td>
<td>10 farms where 10 samples of stored wheat grain and 10 samples of settled grain dust were collected</td>
<td>TLC and HPTLC Different LOD–LOQ for each mycotoxin</td>
<td>Stored wheat and settled dust</td>
<td>The majority (70%) of wheat grain and settled dust samples presented notable quantities of fusarium toxins; ochratoxin was found in 60% of both kinds of samples</td>
</tr>
<tr>
<td>Skaug et al. (2001)</td>
<td>Norway</td>
<td>Dairy farms</td>
<td>Ochratoxin A (OTA)</td>
<td>Air samples collected with stationary samplers</td>
<td>HPLC LOD = 1.5 pg</td>
<td>Air samples and settled dust</td>
<td>Exposure to OTA from inhalation of dust and conidia is possible and peak exposures can be considerable</td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Country</td>
<td>Occupational setting</td>
<td>Investigated mycotoxin(s)</td>
<td>Season</td>
<td>Sampling details</td>
<td>Method LOD–LOQ</td>
<td>Matrix</td>
<td>Main findings</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>----------------------</td>
<td>---------------------------</td>
<td>--------</td>
<td>--</td>
<td>----------------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>Brera et al. (2002)</td>
<td>Italy</td>
<td>Warehouses for green coffee, black pepper, and cocoa beans</td>
<td>Aflatoxins and OTA</td>
<td></td>
<td>44 airborne dust samples collected using stationary samplers: 18 by area (4 for green coffee, 4 for black pepper, 7 for nutmeg, and 3 for cocoa) and 26 by personal sampling</td>
<td>HPLC LODs (ng)</td>
<td>OTA 0.0020</td>
<td>Airborne dust samples A wide range of toxin amounts was found in personal and stationary samples, depending on the job and the distance from the raw materials Dust and mycotoxin amounts collected in the handling and processing areas were lower than those found for personal samples in the same areas</td>
</tr>
<tr>
<td>Iavicoli et al. (2002)</td>
<td>Italy</td>
<td>Factories processing coffee, cocoa beans, and spices</td>
<td>OTA</td>
<td></td>
<td>44 airborne dust samples</td>
<td>HPLC LOD = 0.002 ng</td>
<td>Dust samples</td>
<td>OTA represents a source of occupational risk, in addition to other mycotoxins potentially present in the workplace</td>
</tr>
<tr>
<td>Nordby et al. (2004)</td>
<td>Norway</td>
<td>Grain farms</td>
<td>Trichothecenes: 3-A—DON, DON, nivalenol, T-2 toxin, HT-2 toxin, 4,5-diacetoxy-scirpenol, 1,3-monoacetoxy-scirpenol, Fusarenon-X</td>
<td>No data available</td>
<td>109 grain dust samples. Sampling done on different surfaces.</td>
<td>LOD from 10 to 50 μg kg⁻¹, depending of the mycotoxin</td>
<td>Settled dust</td>
<td>Results found were higher than previously reported; mainly DON, HT-2, and T-2 toxins were found; these were associated with local fungal forecast, cereal species, visible mold damage, and storage</td>
</tr>
<tr>
<td>Reference</td>
<td>Country</td>
<td>Occupational setting</td>
<td>Investigated mycotoxin(s)</td>
<td>Season</td>
<td>Sampling details</td>
<td>Method LOD–LOQ</td>
<td>Matrix</td>
<td>Main findings</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------------------</td>
<td>---------------------------------------</td>
<td>---</td>
<td>--------------</td>
<td>--</td>
<td>--</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>Halstensen et al. (2006)</td>
<td>Norway</td>
<td>Grain farms</td>
<td>Trichothecenes Mycotoxins</td>
<td>No data available</td>
<td>109 samples of newly settled grain dust released during threshing or storage work for 1999 and 2000 crops of spring wheat, oats, and barley</td>
<td>GC-MS LOD = detection limits (DL) were 50–100 μg kg⁻¹ for T-2; 50 μg kg⁻¹ for nivalenol (NIV); 40 μg kg⁻¹ for fusarenon-X; 30 μg kg⁻¹ for HT-2; 20 μg/kg for DON, 3-acetyl-DON, and 4,15 diacetoxyescirpenol (DAS); and 10 μg kg⁻¹ for monoacetoxyscirpenol (MAS)</td>
<td>Settled dust</td>
<td>The dominant trichothecenes in settled grain dust were HT-2, DON, and T-2; no 3-acetyl-DON or fusarenon-X were found; median amount of detected trichothecenes was 69 μg kg⁻¹ (range 0–6000 μg kg⁻¹); trichothecenes found in settled dust suggested that similar contamination could be expected in airborne dust</td>
</tr>
<tr>
<td>Tangni and Pussemier (2007)</td>
<td>Belgium</td>
<td>Private farmers and cereal storage companies</td>
<td>Ergosterol, citreoviridin, citrinin, cyclopiazonic, DON, gliotoxin, helvolic acid, mycophenolic acid, nivalenol, ochratoxin, patulin (PT), penicillic acid, secalonic acid D, sterigmatocystin, zearalenol and zearalenone (ZEA)</td>
<td>No data available</td>
<td>184 settled grain dust samples from storage facilities</td>
<td>HPLC-UV Different LOD–LOQ for each mycotoxin</td>
<td>Settled dust</td>
<td>An assessment of worker exposure, using median values, indicated that mycotoxin uptake through dust inhalation may simultaneously contribute to 0.5%, 0.5%, 0.7%, and 0.1% of the respective tolerable daily intake of OTA, PT, DON, and ZEA; multi-contamination of grain dusts associates exposure to several mycotoxins simultaneously</td>
</tr>
<tr>
<td>Reference</td>
<td>Country</td>
<td>Occupational setting</td>
<td>Investigated mycotoxin(s)</td>
<td>Season</td>
<td>Sampling details</td>
<td>Method LOD–LOQ</td>
<td>Matrix</td>
<td>Main findings</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>---------------------------</td>
<td>-------------------------</td>
<td>--</td>
<td>--</td>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Mayer et al. (2007)</td>
<td>Germany</td>
<td>Grain elevators</td>
<td>Ochratoxin A (OTA)</td>
<td>2005 harvest period, and continued until spring 2006</td>
<td>35 settled grain dust samples collected from several locations in 13 grain elevators</td>
<td>HPLC (OTA, LOD 0.01 ng g(^{-1})), (DON, LOD 15 ng g(^{-1})), (ZEA, detection limit 6 ng g(^{-1}))</td>
<td>Dust samples</td>
<td>Nearly all settled dust samples contained OTA (96%), DON (100%), and ZEA (100%), with median concentrations of 0.4 ng g(^{-1}), 416 ng g(^{-1}), and 126 ng g(^{-1}), respectively</td>
</tr>
<tr>
<td>Mo et al. (2014)</td>
<td>China</td>
<td>Sugar production factory</td>
<td>AFB(_1)</td>
<td>No data available</td>
<td>15 airborne dust samples collected from the bagasse house and presser workshop</td>
<td>ELISA 5–100 mg kg(^{-1})</td>
<td>Dust sample</td>
<td>Dust samples with 6–11 µg kg(^{-1}) dust (7.93 ± 1.49 µg kg(^{-1})); AFB(_1) not detected in any air sample</td>
</tr>
<tr>
<td>Lai et al. (2014)</td>
<td>China</td>
<td>Sugar and paper-making factory</td>
<td>AFB(_1)</td>
<td>Between October and March</td>
<td>15 dust samples (0.9 mg) collected from the sugarcane bagasse warehouse and presser and paper production workshops</td>
<td>ELISA</td>
<td>Dust samples</td>
<td>The concentration of AFB(_1) in dust samples collected from the sugarcane bagasse warehouse and the presser and paper production workshops, were 7.2 ± 1.30, 8.0 ± 1.23, and 8.6 ± 1.82 µg kg(^{-1}), respectively; the concentration of AFB(_1) in dust samples was not statistically significant in these sites (P = 0.35); AFB(_1) was not detected in any of the rice samples</td>
</tr>
<tr>
<td>Reference</td>
<td>Country</td>
<td>Occupational setting</td>
<td>Investigated mycotoxin(s)</td>
<td>Season</td>
<td>Sampling details</td>
<td>Method LOD–LOQ</td>
<td>Matrix</td>
<td>Main findings</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>---------------------------------------</td>
<td>--</td>
<td>-------------------------</td>
<td>---</td>
<td>--------------------------</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>Straumfors et al.</td>
<td>Norway</td>
<td>Grain elevators and compound</td>
<td>70 fungal metabolites were detected: trichothecenes, depsipeptides, ergot alkaloids, and other metabolites from</td>
<td>Winter 2008</td>
<td>33 settled grain dust samples (1.5–15 g) collected from 20 grain elevators and compound feed mills</td>
<td>LC-MS</td>
<td>Settled dust</td>
<td>The main mycotoxins found were from the Fusarium genus; particularly large quantities of DON, depsipeptides, aurofusarin, avenecin Y, and culmorin were found; all samples contained multiple mycotoxins, indicating a highly complex pattern of possible inhalational exposure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>feed mills</td>
<td>Fusarium, Claviceps, Alternaria, Penicillium, Aspergillus, and other fungi</td>
<td>(n = 9 samples)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Autumn 2008</td>
<td>(n = 15 samples) and winter 2009 (n = 9 samples)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mayer et al.</td>
<td>Different European countries and New Zealand</td>
<td>Onion sorting</td>
<td>Aflatoxin G2, aflatoxin G1, aflatoxin B2, AFB, agroclavine, beauvericin d, DON, DON-3-glucoside, deepoxy-deoxynivalenol, 3-acetyl-deoxynivalenol, diacetoxyscirpenol dihydro-ergosin, enniatin A, enniatin A1, enniatin B, enniatin B1, ergocornin, ergotamin, ergovalin, fumonisin B1, hydrolyzed fumonisin B1, fumonisin B2 fusarenon X, HT-2 toxin, moniliformin, monoacetoxyscirpenol, neosolaniol, nivalenol, ochratoxin α, OTA, ochratoxin B, patulin, T-2 toxin, verrucarin A, verrucarol, α-zearalenol, β-zearalenol, zearalenone, zearalenone-4-glucoside, zearalenone-4-sulfate</td>
<td>Not available</td>
<td>12 representative samples of dry outer onion skins</td>
<td>Liquid chromatography</td>
<td>Onions</td>
<td>In 6 of the 12 samples, tests were positive for DON, fumonisin B1, and fumonisin B2 mycotoxins in quantitatively detectable amounts of 3940 ng g⁻¹ for fumonisin B1 and in the ranges of 126–587 ng g⁻¹ for deoxynivalenol and 55–554 ng g⁻¹ for fumonisin B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Liquid chromatography</td>
<td></td>
<td>Mass spectrometry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Country</td>
<td>Occupational setting</td>
<td>Investigated mycotoxin(s)</td>
<td>Season</td>
<td>Sampling details</td>
<td>Method LOD–LOQ</td>
<td>Matrix</td>
<td>Main findings</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>--------</td>
<td>-----------------</td>
<td>----------------</td>
<td>--------</td>
<td>--------------</td>
</tr>
<tr>
<td>Straumfors et al. (2014)</td>
<td>Norway</td>
<td>Grain elevators and compound feed mills</td>
<td>70 fungal metabolites were detected: trichothecenes, depsipeptides, ergot alkaloids, and other metabolites from Fusarium, Claviceps, Alternaria, Penicillium, Aspergillus, and other fungi</td>
<td>Winter 2008 (n = 9 samples), Autumn 2008 (n = 15 samples), and winter 2009 (n = 9 samples)</td>
<td>Aerosols collected during threshing of 78 winter wheat fields and unloading of 59 grain lots in six grain terminals</td>
<td>33 settled grain dust samples (1.5–15 g) collected from 20 grain elevators and compound feed mills</td>
<td>LC-MS Settled dust</td>
<td>The main mycotoxins found were from the Fusarium genus; particularly large quantities of DON, depsipeptides, aurofusarin, avenacein Y, and culmorin were found; all samples contained multiple mycotoxins, indicating a highly complex pattern of possible inhalational exposure</td>
</tr>
<tr>
<td>Mayer et al. (2016)</td>
<td>Different European countries and New Zealand</td>
<td>Onion sorting</td>
<td>Aflatoxin G2, aflatoxin G1, aflatoxin B2, AFB1, agroclavine, beauvericin d, DON, DON-3-glucoside, deepoxy-deoxynivalenol, 3-acetyl-deoxynivalenol, diacetoxyscirpenol dihydroergosin, enniatin A, enniatin A1, enniatin B, enniatin B1, ergocornin, ergotamin, ergovalin, fumonisin B1, hydrolyzed fumonisin B1, fumonisin B2 fusarenon X, HT-2 toxin, moniliformin, monoacetoxyscirpenol, neosolaniol, nivalenol, ochratoxin α, OTA, ochratoxin B, patulin, T-2 toxin, verrucarin A, verrucarol, α-zearalenol, β-zearalenol, zearalenone, zearalenone-4-glucoside, zearalenone-4-sulfate</td>
<td>Not available</td>
<td>12 representative samples of dry outer onion skins</td>
<td>Liquid chromatography with electrospray ionization and triple quadrupole mass spectrometry</td>
<td>Onions</td>
<td>In 6 of the 12 samples, tests were positive for DON, fumonisin B1, and fumonisin B2 mycotoxins in quantitatively detectable amounts of 3940 ng g⁻¹ for fumonisin B1 and in the ranges of 126–587 ng g⁻¹ for deoxynivalenol and 55–554 ng g⁻¹ for fumonisin B2</td>
</tr>
<tr>
<td>Niculita-Hirzel et al. (2016)</td>
<td>Switzerland</td>
<td>Grain industry</td>
<td>DON, 3-ADON, 15-ADON, nivalenol (NIV), and Zearalenone (ZEA)</td>
<td>15 July and 9 August 2010</td>
<td>Aerosols collected during threshing of 78 winter wheat fields and unloading of 59 grain lots in six grain terminals</td>
<td>HPLC MS/MS</td>
<td>Aerosols and grain dust</td>
<td>Wheat harvesting generated on average 28, 20, and 1 ng m⁻³ of DON, NIV, and ZEA, respectively, and grain unloading generated 53, 46, and 4 ng m⁻³; personal sampling revealed that working in a cab was an efficient protective measure; however, it was insufficient to avoid chronic exposure to multiple mycotoxins; the most exposed activity was cleaning, exposing workers to DON, NIV, and ZEN at concentrations as high as 65, 59, and 3 ng m⁻³, respectively</td>
</tr>
<tr>
<td>Ferri et al. (2017)</td>
<td>Italy</td>
<td>Feed mill workers</td>
<td>AFs (M1, G2, G1, B1, B2) and aflatoxicol (AFOH)</td>
<td>March to April 2014</td>
<td>Dust samples collected to assess possible individual exposure by inhalation</td>
<td>Liquid chromatography–mass spectrometry (LC-MS/MS LOD was 0.5 µg kg⁻¹ for each aflatoxin. LOQ different for each mycotoxin)</td>
<td>Inhalable dust samples (environmental and individual exposure)</td>
<td>Airborne filters showed levels of aflatoxins in several areas of both plants, whereas personal air-filter devices only showed aflatoxins in one plant; the area at the greatest risk of worker exposure was the unloading area in plant A (0.027 ng m⁻³)</td>
</tr>
</tbody>
</table>

TLC, thin-layer chromatography method; HPLC, high-performance liquid chromatography method; HPTLC, high-performance thin-layer chromatography method.

aStudies with biomonitoring data.
and bakers) than in controls (Saad-Hussein et al., 2014). In Portugal, AFB1 was detected in the serum of 50% of poultry workers, whereas it was absent from all the serum from controls (Viegas et al., 2016). On the other hand, a study in Germany using biomonitoring to assess exposure to certain mycotoxins in mill workers failed to reveal such exposure in urine spot samples (Föllmann et al., 2016). Indeed, no significant difference in biomarker levels was observed between mill workers and control group.

A recent study using intact and damaged human skin in an in vitro Franz diffusion cell set-up showed that beauvericin and enniatins can penetrate the skin (Taevernier et al., 2016). Table 2 summarizes the results obtained in 15 studies which used biomonitoring to assess occupational exposure to mycotoxins; some of these studies also used environmental samples and are therefore already mentioned in Table 1. Similarly to the studies reported in Table 1, until 2015, studies focused on one mycotoxin alone (aflatoxins and ochratoxins were the most studied); but some studies were subsequently able to report on several mycotoxins in the same biological sample, as analytical resources expanded. These articles (Föllmann et al., 2016; Ferri et al., 2017; Viegas et al., 2017) again demonstrated that the most common exposure scenario is co-exposure to several mycotoxins. However—and this is one of the limitations of using biomonitoring—it is impossible to conclude whether exposure results solely from the working environment or whether food intake is also a contributing factor. Most of these studies (12/16), however, had included a control group, usually including workers from administrative companies in the same locality, which enabled to take into account the exposure by food intake and a better understanding of the role of working environments in the total burden of mycotoxin exposure (Viegas et al., 2013b).

Exposure assessment—What to consider?

Levels of exposure can vary greatly between different tasks within the same industry, and characterizing exposure implies performing measurements on each task separately to identify those most at risk. For example, in swine husbandry, Viegas et al. (2013b) suggested that feed was one of the contamination sources since AFB1 exposure was higher in workers performing animal feeding than in workers doing other type of tasks. In a waste management setting, where high exposure to AFB1 was also measured, waste was supposed to be the source of contamination (Viegas et al., 2015) and exposure remains stable over a working day since workplace conditions and tasks are the same during the entire work shift.

Moreover, within the same task, levels of exposure could also vary over time depending on the quality of the materials and products handled. For example, in food processing plants, certain batches of products (foodstuffs) could be highly contaminated, whereas other batches were contaminant free. Therefore, the contamination of the material should be checked before handling and actions taken to avoid or prevent exposure. As an example, contaminated material should be rejected or collective preventive measures reinforced or, as a last resort, personal protective equipment (respiratory protections, gloves, and goggles) worn. Even if the mycotoxin concentration in a product or material is low, handling high amounts of it can cause an elevated airborne mycotoxin concentration in the workplace at a specific moment that then endures depending on how tasks develop (Mayer, 2015). For example, in France, measurements in food industries (cereals, vegetables, and spices) showed no contamination of the products handled above regulatory limits. However, workers’ exposure via inhalation was high for all settings since the airborne mycotoxin concentration in the workplace is high for all settings since the air was high for all settings since the air measurements revealed significant levels of mycotoxins bound to dust particles (Jargot and Melin, 2013). Dry products or materials with high specific surface areas, like hay or plant fibers, tend to release large amounts of dust that act as the carrier for fungi and mycotoxins and increase the probability of inhalation. Similarly, the manual sorting or transport of contaminated products will contribute to an elevated release of contaminated dust and consequently to potentially high exposure to mycotoxins. Some tasks common to all food and agriculture processing plants, such as cleaning activities involving sweeping or dust removal using compressed air, are well known to be associated with high exposure to dust (Mayer, 2015).

Another very significant point to consider is that co-exposure to different mycotoxins is very likely to occur since the contamination of foodstuffs by several mycotoxins has frequently been demonstrated (Grenier and Oswald, 2011; Gerding et al., 2014; Assunção et al., 2015; De Ruyck et al., 2015; Alassane-Kpembi et al., 2017). Synergistic or additive effects should therefore also be taken into account when performing a risk assessment, and measurements should look for several mycotoxins. It is also well known that the proximity of a worker’s head to the material handled increases exposure risk (Mayer, 2015; Viegas et al., 2016). Therefore, besides identifying the tasks generating high exposure, it is important to identify workers’ behaviors (such as not wearing protection equipment such as gloves or...
Table 2. Results from biomonitoring studies.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Country</th>
<th>Occupational setting</th>
<th>Investigated mycotoxin(s)</th>
<th>Season</th>
<th>Sampling details</th>
<th>Method</th>
<th>LOD-LOQ</th>
<th>Matrix</th>
<th>Main findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autrup et al. (1991)</td>
<td>Denmark</td>
<td>Animal feed production</td>
<td>AFB1 (measured AFB1 albumin adducts)</td>
<td>No data available</td>
<td>45 workers</td>
<td>ELISA</td>
<td>LOD = 5 pg AFB1 mg albumin−1</td>
<td>Serum</td>
<td>Findings suggest occupational exposure to AFB1; all the workers exposed to AFB1 were employed by company B, but with different job descriptions and different types of prescribed personal protection</td>
</tr>
<tr>
<td>Brera et al. (2002)</td>
<td>Italy</td>
<td>Warehouses for green coffee, black pepper, and cocoa beans</td>
<td>OTA</td>
<td>No data available</td>
<td>26 workers</td>
<td>HPLC</td>
<td>LOD = 0.02 ng ml⁻¹ LOQ = 0.05 ng ml⁻¹</td>
<td>Serum</td>
<td>The range of OA levels in the serum of occupationally exposed workers examined was 0.94–3.28 ng ml⁻¹; results indicate that occupational exposure to OTA led to serum levels higher than those in unexposed subjects</td>
</tr>
<tr>
<td>Iavicoli et al. (2002)</td>
<td>Italy</td>
<td>Three factories for coffee, cocoa beans, and spices</td>
<td>OTA</td>
<td>Not data available</td>
<td>26 workers and 23 controls</td>
<td>HPLC</td>
<td></td>
<td>Serum</td>
<td>Results showed that, in cases where there was a lack of preventive measures applied in workplaces, occupational exposure could result in increased OA levels in serum; this suggests that both environmental and biological monitoring should be undertaken in workplaces where OA contaminated-products are handled or processed</td>
</tr>
<tr>
<td>Degen et al. (2007)</td>
<td>Germany</td>
<td>Grain handling companies</td>
<td>OTA</td>
<td>July 2005 and March 2006</td>
<td>61 samples from a cohort of male workers</td>
<td>HPLC</td>
<td>LOD = 0.05 ng ml⁻¹ plasma</td>
<td>Blood</td>
<td>Data did not provide evidence for a significant inhalatory burden of OTA in grain workers; since deoxynivalenol and zearalenone were also detected in the dust samples in concentrations much higher than that of OTA, additional research should try to assess the potential relevance of inhalation exposure to these mycotoxins</td>
</tr>
<tr>
<td>Reference</td>
<td>Country</td>
<td>Occupational setting</td>
<td>Investigated mycotoxin(s)</td>
<td>Season</td>
<td>Sampling details</td>
<td>Method LOD-LOQ</td>
<td>Matrix</td>
<td>Main findings</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>---</td>
<td>-------------------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>----------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Oluwafemi et al. (2012)</td>
<td>Nigeria</td>
<td>Feed mill</td>
<td>Aflatoxins: B<sub>1</sub>, B<sub>2</sub>, G<sub>1</sub>, and G<sub>2</sub></td>
<td>Located in the tropical rain forest zone with high humidity and temperature</td>
<td>28 workers and 30 controls</td>
<td>HPLC</td>
<td>Blood</td>
<td>The mean concentrations of AFB<sub>1</sub>, AFB<sub>2</sub>, AFG<sub>1</sub>, and AFG<sub>2</sub> in the blood of feed mill workers varied from 73.4 to 189.2, 0.1 to 0.5, 0.3 to 1.9, and <0.1 to 3.4 ng ml<sup>-1</sup>, respectively; poorly ventilated mills resulted in higher blood AFB<sub>1</sub> levels; AFB<sub>1</sub> was not detected in control group</td>
<td></td>
</tr>
<tr>
<td>Viegas et al. (2012)</td>
<td>Portugal</td>
<td>Poultry production</td>
<td>AFB<sub>1</sub> (free AFB<sub>1</sub> and AFB<sub>1</sub> bound to albumin)</td>
<td>Spring</td>
<td>31 workers</td>
<td>ELISA LOD=5 pg AFB<sub>1</sub> mg<sup>-1</sup> albumin</td>
<td>Serum</td>
<td>Results suggest that exposure to AFB<sub>1</sub> by inhalation occurs and represents an additional risk in this occupational setting</td>
<td></td>
</tr>
<tr>
<td>Viegas et al. (2013a)</td>
<td>Portugal</td>
<td>Swine husbandry</td>
<td>AFB<sub>1</sub> (free AFB<sub>1</sub> and AFB<sub>1</sub> bound to albumin)</td>
<td>Autumn</td>
<td>28 workers and 30 controls</td>
<td>ELISA LOD = 1 ng ml<sup>-1</sup></td>
<td>Serum</td>
<td>21 workers (75%) showed detectable levels of AFB<sub>1</sub> with values ranging from <1 to 8.94 ng ml<sup>-1</sup> and with a mean value of 1.91 ± 1.68 ng ml<sup>-1</sup>; in the control group, AFB<sub>1</sub> values were all below 1 ng ml<sup>-1</sup>; data indicated that exposure to AFB<sub>1</sub> occurs in swine barns and may be related to different causes and contamination sources</td>
<td></td>
</tr>
<tr>
<td>Mo et al. (2014)</td>
<td>China</td>
<td>Sugar production factory</td>
<td>AFB<sub>1</sub> (measured AFB<sub>1</sub> albumin adducts)</td>
<td>No data available</td>
<td>120 workers and 80 controls</td>
<td>ELISA</td>
<td>Serum</td>
<td>AFB<sub>1</sub> albumin adducts positive in 67 workers (57.4%). Values ranging between 6.4 and 212 pg mg<sup>-1</sup> albumin adducts (mean value: 51 ± 4.62 pg mg<sup>-1</sup> albumin).</td>
<td></td>
</tr>
<tr>
<td>Lai et al. (2014)</td>
<td>China</td>
<td>Sugar and paper-making factory</td>
<td>AFB<sub>1</sub></td>
<td>Between October and March</td>
<td>181 workers and 203 controls</td>
<td>ELISA</td>
<td>Serum</td>
<td>The difference in the serum AFB<sub>1</sub> albumin adduct levels of workers and controls was statistically significant; serum AFB<sub>1</sub> albumin adducts were detected in 102 (56.35%) workshop employees, with values ranging from 8 to 212 pg mg<sup>-1</sup> albumin (mean value 38.51 ± 44.80 pg mg<sup>-1</sup> albumin).</td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Country</td>
<td>Occupational setting</td>
<td>Investigated mycotoxin(s)</td>
<td>Season</td>
<td>Sampling details</td>
<td>Method</td>
<td>Matrix</td>
<td>LOD-LOQ</td>
<td>Main findings</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>------------</td>
<td>------------------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>Malik et al. (2014)</td>
<td>India</td>
<td>Food grain workers</td>
<td>Aflatoxins</td>
<td>Not data available</td>
<td>46 workers and 44 controls</td>
<td>ELISA</td>
<td>Serum</td>
<td>LOD-LOQ</td>
<td>Aflatoxins were detected in 32.6% of food grain workers and 9.1% of nonfood grain workers; a significant difference was also found between the two groups in BAL culture for Aspergillus; about 47.8% of food grain workers and 11.4% of nonfood grain workers had chronic respiratory symptoms</td>
</tr>
<tr>
<td>Saad-Hussein et al. (2014)</td>
<td>Egypt</td>
<td>Wheat handlers, including millers and bakers</td>
<td>AFB<sub>1</sub> (AFB<sub>1</sub> bound to albumin—AFB<sub>1</sub>/Alb)</td>
<td>Not data available</td>
<td>190 wheat handlers: 100 flour-mill workers and 90 bakers; plus 64 controls</td>
<td>ELISA</td>
<td>Serum</td>
<td>LOD-LOQ</td>
<td>AFB<sub>1</sub>/Alb was significantly higher among workers employed as bakers than in mill workers and controls; mill workers had higher levels of AFB<sub>1</sub>/Alb than controls; AFB<sub>1</sub>/Alb was significantly higher among hepatocellular carcinoma cases than in the other groups; AFB<sub>1</sub>/Alb was significantly correlated with the duration of exposure in bakers</td>
</tr>
<tr>
<td>Viegas et al. (2015)</td>
<td>Portugal</td>
<td>Waste management</td>
<td>AFB<sub>1</sub> (free AFB<sub>1</sub> and AFB<sub>1</sub> bound to albumin)</td>
<td>Spring and summer</td>
<td>41 workers and 30 controls</td>
<td>ELISA</td>
<td>Serum</td>
<td>LOD = 1 ng ml<sup>-1</sup></td>
<td>All the workers showed detectable levels of AFB<sub>1</sub> with values ranging from 2.5 to 25.9 ng ml<sup>-1</sup> and with a median value of 9.9 ± 5.4 ng ml<sup>-1</sup>; in the control group, AFB<sub>1</sub> values were all below 1 ng ml<sup>-1</sup>; results from this work suggest that exposure to AFB<sub>1</sub> occurs in waste management settings and may be related with the high contamination of waste being handled</td>
</tr>
<tr>
<td>Viegas et al. (2016)</td>
<td>Portugal</td>
<td>Poultry slaughterhouse</td>
<td>AFB<sub>1</sub> (free AFB<sub>1</sub> and AFB<sub>1</sub> bound to albumin)</td>
<td>Winter</td>
<td>30 workers and 30 controls</td>
<td>ELISA</td>
<td>Serum</td>
<td>LOD = 1 ng ml<sup>-1</sup></td>
<td>14 workers (47.0%) showed detectable levels of AFB<sub>1</sub> with values from 1.06 to 4.03 ng ml<sup>-1</sup> and a mean value of 1.73 ng ml<sup>-1</sup>; in the control group, AFB<sub>1</sub> values</td>
</tr>
<tr>
<td>Reference</td>
<td>Country</td>
<td>Occupational setting</td>
<td>Investigated mycotoxin(s)</td>
<td>Season</td>
<td>Sampling details</td>
<td>Method LOD-LOQ</td>
<td>Matrix</td>
<td>Main findings</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------</td>
<td>--------------------------</td>
<td>--</td>
<td>--------------</td>
<td>--</td>
<td>--</td>
<td>---------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Föllmann et al. (2016)</td>
<td>Germany</td>
<td>Three grain mill workers</td>
<td>DON, ZEN, OTA, and citrinine (CIT, (DON-1), α- and β-zearealenol (α- and β-ZEL), ochratoxin alpha (OTA), and dihydrodrocitrinone (DH-CIT)]</td>
<td>No data available</td>
<td>Samples provided by 12 male and 5 female workers. Control group comprised 12 workers</td>
<td>HPLC-LC (OTA and OTA)</td>
<td>LC-MS/MS (CIT and its metabolite HO-CIT)</td>
<td>Serum and urine samples</td>
<td>Citrinin, DON, OTA, and ZEN were detected in nearly all urine samples from mill workers and controls; mycotoxin biomarker levels in urine from mill workers and controls were not significantly different</td>
</tr>
<tr>
<td>Saad-Hussein et al. (2014)</td>
<td>Egypt</td>
<td>Wheat handlers, including millers and bakers</td>
<td>AFB₁</td>
<td>No data available</td>
<td>90 bakers, 100 flour milling workers, and 100 controls with no exposure to flour</td>
<td>ELISA Serum</td>
<td>Serum AFB₁-Alb adduct was significantly higher in bakers than in milling workers; AST and ALT liver enzymes were significantly higher in milling workers and bakers than in controls (P < 0.05, P < 0.0001), respectively; exposure duration was significantly correlated with serum AFB₁ in bakers; moreover, there was significant correlation between serum AFB₁ and both ALT and AST levels in bakers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Ferri et al. (2017) | Italy | Feed mill workers | AFs (M1, G2, G1, B1, B2) and aflatoxicol (AFOH) | March to April 2014 | 29 exposed workers and 30 controls | HPLC-FLD LOD =0.025 ng ml⁻¹ for AFB₁, AFG₁, AFM₁, and AFOH and 0.006 ng ml⁻¹ for AFB₂ and AFG₂ | Serum and urine | No quantifiable presence of free aflatoxins was found in serum samples; quantifiable levels of AFB₁, AFB₂, AFG₁, AFG₂, and AFM₁ were found in urine; none of the samples was positive for AFOH; findings revealed the presence of higher AFs concentrations in exposed workers than...
<table>
<thead>
<tr>
<th>Reference</th>
<th>Country</th>
<th>Occupational setting</th>
<th>Investigated mycotoxin(s)</th>
<th>Season</th>
<th>Sampling details</th>
<th>Method LOD-LOQ</th>
<th>Matrix</th>
<th>Main findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viegas et al. (2018)</td>
<td>Portugal</td>
<td>Waste management</td>
<td>Beauvericin, citrinin, enniatin A/A1/B1, fumonisin B1, zearalanone, α/β-zearalenol, dihydrocitrinone deoxynivalenol, 10 hydroxyochratoxin A, ochratoxin A, ochratoxin α, T 2 toxin, HT 2 toxin zearalenone, altenuene, alternariol, alternariol-mono-methyl ether, 2′R ochratoxin A, deoxynivalenol-3-glucuronic acid and HT-2-4-glucuronic acid</td>
<td>Spring and summer</td>
<td>41 workers</td>
<td>HPLC-MS/MS</td>
<td>Serum</td>
<td>In non-exposed controls, although these differences are to be considered consistent with random fluctuations. In addition to the AFB, reported in Viegas et al. (2015), enniatin B (EnB) and ochratoxin A (OTA) were quantified, as was 2′R ochratoxin A (2′R OTA); besides confirming co-exposure to several mycotoxins, results probably indicated different exposure routes for the mycotoxins reported.</td>
</tr>
</tbody>
</table>
respiratory protection devices) or workplace specificities which might influence exposure. Personal sampling in the worker’s inhalation zone should always be preferred to stationary sampling since it is a better assessment of the true occupational exposure.

Difficulties in interpreting exposure measurements

The absence of exposure limits makes it difficult to interpret exposure measurements. Currently it is not possible to determine acceptable workplace exposure concentrations of mycotoxins to ensure workers’ good health. Keeping exposure as low as possible should undoubtedly be an objective. Because these compounds are so infrequently monitored in occupational environments it is impossible to compare exposure levels between different workplaces and to have an idea of what constitutes a normal background concentration. This highlights the great importance of documenting exposures using standard methods of sampling and analysis. Currently, because it is possible to quantify airborne fungi more easily, this is often used as an indirect indicator of the presence of mycotoxins (Halstensen et al., 2006).

However, this approach lacks reliability since mycotoxins can be present in the environment long after fungi have been eliminated. Also, not all the fungi produce mycotoxins (Halstensen, 2008; Alborch et al., 2011). Finally, exposure to mycotoxins is frequently characterized by simultaneous exposure to several mycotoxins (see details in Tables 1 and 2). This co-occurring exposure to several mycotoxins is also the most common scenario in the food and feed sector (Grenier and Oswald, 2011; Assunção et al., 2015; De Ruyck et al., 2015; Viegas et al., 2017). This aspect brings new challenges to occupational risk assessment.

Measurement, methodology, and biomonitoring

The French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS) has developed a validated method for measuring seven of the most frequently occurring mycotoxins in the workplace; it comes with a detailed sampling and analytical protocol (fiche MetroPol) and meets the criteria required for reproducibility and reliability. Air samples are collected on foam pads, using the CIP 10 personal aerosol sampler (http://www.bio-rad.com/en-ch/product/cip10-m-air-sampler) which has an inhalable health-related aerosol fraction selector. Samples are solvent extracted, cleaned using immunoaffinity columns, and analyzed using liquid chromatography with fluorescent detection (Jargot and Melin, 2013). This method allows the measurement of ochratoxin A, fumonisins and aflatoxins and zearalenone, in the dust extract to which they are normally bound. The method ensures that mycotoxin measurements using conventional analytical equipment is applicable to occupational assessment (Jargot and Melin, 2013).

As an alternative or as a complement to air monitoring, biomonitoring is another way of assessing exposure to mycotoxins. Biomonitoring can include the detection, in easily accessible body fluids such as blood and urine, of the parent compound (mycotoxin) and its metabolites (De Nijs et al., 2016). However, the use of biomonitoring implies the availability of information related with each mycotoxin toxicokinetics, metabolism, and bioavailability to be able to interpret correctly the results (Escrivá et al., 2017).

Recent research using biomarkers (Warth et al., 2013a,b; Gerding et al., 2014, 2015; Heyndrickx et al., 2014) revealed a level of exposure to mycotoxins from food consumption which was above the widely accepted tolerable daily intake values (Assunção et al., 2015). It is important to note that data on background dietary exposure to mycotoxins is needed to determine the additional burden of respiratory and dermal exposure in the workplace (Degen, 2008). If this background data are unavailable, a control group of individuals from the general population should be included to exclude the possibility of exposure by diet (Degen, 2008).

However, as mentioned above, the most common exposure scenario is simultaneous co-exposure to several mycotoxins. This exposure is due to several factors, including the ability of some fungi to produce several mycotoxins simultaneously (Wallin et al., 2015). It is, therefore, extremely relevant, from an occupational health point of view, to be able to measure several mycotoxins in one sample, and the most recent research has indeed developed approaches using multi-mycotoxin biomonitoring (Warth et al., 2013a; Gerding et al., 2014; Solfrizzo et al., 2014; Wallin et al., 2015; Osteresch et al., 2017). Additionally, approaches measuring several mycotoxins in the same sample from different environmental matrices allow to understand and recognize the true exposure scenario (Schenzel et al., 2012; Jargot and Melin, 2013; Van de Perre et al., 2014; Mayer et al., 2016; Viegas et al., 2017) and to perform a more accurate exposure and risk assessment.

Conclusions

Despite increasing numbers of recent published works on the subject, there remains much to be done to have mycotoxins recognized as real and common
occupational risk factors in certain specific settings. It is therefore extremely important to properly characterize mycotoxic exposure (which mycotoxins, at which concentrations, for which duration) in the occupational settings where exposure is probable and to understand which factors can influence that exposure. Standardized methodologies (sampling and analysis) are needed to allow comparisons between different studies. Moreover, to date, there have been insufficient epidemiological studies to assess the acute and chronic health effects of occupational exposure and provide a clear picture of the health risks. This is particularly challenging since one mycotoxin can elicit more than one type of effect and these can occur at different exposure levels.

These studies are also crucial to the future development and implementation of occupational exposure limits for each mycotoxin separately and for mixtures of different mycotoxins that produce the same health effect or share the same mode of action.

Only once this has been accomplished will it be possible to ensure appropriate occupational health interventions: implementation of exposure monitoring programs, application of suitable preventive and protective measures, and implementation of an adequate health surveillance programs for workers who are potentially exposed.

In the meantime, researchers should work together to select/develop an optimal sampling and analysis methodology and participate in large-scale, multi-center, epidemiological studies to obtain relevant data. Occupational hygienists must be aware of these risks and able to recognize critical situations; they should anticipate exposure by implementing preventive measures.

Declaration

Funding for this review was provided by the Institute for Work an Health and the Lisbon School of Health Technology (salary of the authors). The authors declare no conflict of interest relating to the material presented in this article. Its contents, including any opinions and/or conclusions expressed, are solely those of the authors.

References

