
Solving the Conditional IF Problem with a MILP Model:
from One Interval to N Non Overlapping Intervals

Jose Barahona da Fonseca

Department of Electrical Engineering and Computer Science
Faculty of Sciences and Technology

New University of Lisbon
Monte de Caparica, 2829-516 Caparica

Portugal
Email: jbfo@fct.unl.pt

Abstract—Although it is very easy to solve the conditional IF
problem with a procedural programming language, it is very
difficult to solve it with mathematical programming, especially if
the argument of the IF it is an AND or an OR logical condition,
based on the variables of the Mixed Integer Liner Program
(MILP) model. In this work we propose three very elegant and
simple MILP models to solve this problem, and we show with
three examples that they are very efficient in terms of runtime
and memory usage. Next we generalize the first MILP model to
N non overlapping intervals. Finally we present the outputs of
the solution of these MILP models using the Cplex solver and
the GAMS modeling software.

Keywords–Mixed Integer Linear Programming; Linearization
of a Nonlinear Problem; Solving any Nonlinear Problem with a
MILP Model; Conditional IF Problem; Solution of the Conditonal
IF Problem with a MILP Model.

I. INTRODUCTION

In procedural programming languages it is very simple to
solve the condiotional IF problem. Nevertheless, in mathemat-
ical programming, this problem turns into a very nonlinear
problem. In this work we apply some linearization techniques
[1] to solve the conditional IF problem with a linear MILP
model. To our knowledge there are no previous proposals
published in the literature to solve the conditional IF problem
with mathematical programming. This paper is organized as
follows. In section II we make a small introduction to the basic
concepts of mathematical programming and MILP model. In
section III we describe the first MILP model that solves
the conditional IF problem with one interval with an AND
argument. In section IV we describe the second MILP model
that solves the conditional IF problem with two intervals
with an OR argument. In section V we describe the third
MILP model that solves the conditional IF problem with N
non overlapping intervals and in section VI we present the
conclusions and possible vectors of evolution of this work.

II. WHAT IS A MATHEMATICAL PROGRAM? WHAT IS A
MILP MODEL?

A mathematical program is a set of constraints, each one
with a set of variables and an objective variable, defined by an
equality constraint, that will be maximized or minimized by
an optimization algorithm, the solver. The constraints can be
inequalities (greater or equal or less or equal) or equalities.

A Mixed Integer Linear Program (MILP) model is a
mathematical program with integer and binary variables and
where all constraints are linear. In this work we will use the
Cplex solver [2] to obtain the solution of our three MILP
models. To implement the MILP model we use a modeling
software, the GAMS software [3], which allows to translate
each constraint into a line of code, and call the Cplex algorithm
with another line of code. This way we used a very complex
optimization algorithm to solve our MILP models without
knowing its details and parameters.

III. DESIGN AND IMPLEMENTATION OF A MILP MODEL
TO SOLVE THE CONDITONAL IF PROBLEM WITH ONE

INTERVAL WITH AN AND ARGUMENT

The conditional IF problem with one interval with an AND
argument is formalized in Algorithm 1. Next we will explain
how we solved this very nonlinear problem with a linear MILP
model.

Algorithm 1 Conditonal IF Problem with One Interval with
an AND Argument

for i = 1 to Nx do
x(i)← x par(i)

end for
for i = 1 to Nx do

if x(i) ≥ x min AND x(i) ≤ x max then
TA(i)← value0

else
TA(i)← value1

end if
end for

We begin by initializing the array variable x(i) with the
array parameter x par(i) through the set of Nx equalities
(1).

∀i, x(i) = x par(i) (1)

In the set of equalities (1), the array x par(i) is a
predifined parameter and x(i) an array variable. We convert
the parameter array in a variable array to show that the
MILP model works well over an array variable. In the next
two MILP models we also make this conversion, so we will



not make reference to it anymore. The set of equalities (1)
is implemented in GAMS syntax by the following line of code:

calc x(i).. x(i)=e=x par(i);.

Since the model is linear, we cannnot make the logical
AND of x(i) ≥ x min and x(i) ≤ x max. So we divide
the two inequalities in two separate constraints and introduce
an auxiliary indexed binary variable, relax(i), that will have
the value 1 when the AND condition is false. To prevent the
trivial solution of all 1s in relax(i), later on we will minimize
it. This way, we formulate the solution of the IF problem with
one interval as an optimization problem. This works because
we can consider two constraints of a mathematical program
as the logical AND of them. Then we multiply relax(i) by
a parameter, max min, and add this product to x(i). This
paramenter must ensure that, for all x(i), when relax(i) is 1,
then (2) is always true.

∀i, x(i) +max min relax(i) ≥ x min (2)

The set of inequalities (2) is implemented in GAMS
syntax by the following line of code:

calc relax(i).. x(i) + max min * relax(i) =g= x min;.

The other set of Nx inequalities is expressed by (3).

∀i, x(i) ≤ x max+max min relax(i) (3)

The set of inequalities (3) is implemented in GAMS
syntax by the following line of code:

calc relax2(i).. x(i) =l= x max + max min * relax(i);.

Now that we have calculated relax(i), it is straighforward
to choose between the two values, the in value, value0,
associated to a 0 in relax(i), and the out value, value1,
associated to a 1 in relax(i). This is expressed by the set
of Nx equations (4).

∀i, TA(i) = (1−relax(i)) value0 + relax(i) value1 (4)

Note that 1 − relax(i) is the negation of relax(i), and
when relax(i) is 0, this means that x(i) is between x min
and x max. In other words, we can say that (4) is equivalent
to Algorithm 2.

Algorithm 2 Algorithm Implemented by (4)

for i = 1 to Nx do
if relax(i) = 0 then
TA(i)← value0

else
TA(i)← value1

end if
end for

The set of Nx equalities (4) is implemented in GAMS
syntax by the following line of code:

calc TA(i).. TA(i) =e=(1-relax(i))*value0 + relax(i) * value1;.

To minimize relax(i) and prevent the trivial solution of all
1s in this binary variable, we sum all its elements and attribute
this sum to the objective variable, obj, through (5), and then
minimize obj.

obj =

Nx∑
i=1

relax(i) (5)

Equation (5) is implemented in GAMS syntax by:

calc obj.. obj=e=sum(i, relax(i));.

The minimization of obj is done in GAMS syntax by the
following two lines of code:

Model CondIF / all /;
Solve CondIF minimizing obj using MIP;.

In Appendix A, we present the complete GAMS code that
implements this first MILP model with x min = 5, x max =
10, max min = 100, value0 = 50 and value1 = −5, and
in Appendix B we present the output of a run of this model
using the Cplex solver, with a set of x par(i) with Nx = 50
values.

IV. DESIGN AND IMPLEMENTATION OF A MILP MODEL
TO SOLVE THE CONDITONAL IF PROBLEM WITH TWO

INTERVALS WITH AN OR ARGUMENT

The conditional IF problem with one interval with an OR
argument is formalized in Algorithm 3. Next we will explain
how we solved this problem with a MILP model.

Algorithm 3 Conditonal IF Problem with Two Intervals with
an OR Argument

for i = 1 to Nx do
x(i)← x par(i)

end for
for i = 1 to Nx do

if x(i) ≤ x min then
TA(i)← value0

else
if x(i) ≥ x max then
TA(i)← value1

else
TA(i)← value2

end if
end if

end for

Since now we have two disjoint inequalities, we must
have two auxiliary indexed binary variables, relax(i) and
relax2(i), that must be simultaneously minimized, to prevent
the trivial solution of all 1s in these two indexed binary
variables.

The first set of inequalities is implemented by (6) which is
similar to (3).



∀i, x(i) ≤ x min + max min relax(i) (6)

The set of inequalities (6) is implemented in GAMS
syntax by the following line of code:

calc relax(i).. x(i) =l= x min + max min * relax(i);.

The second set of inequalities is implemented by (7), where
relax(i) is substituded by relax2(i).

∀i, x(i) + max min relax2(i) ≥ x max (7)

The set of inequalities (7) is implemented in GAMS
syntax by the following line of code:

calc relax2(i).. x(i) + max min * relax2(i) =g= x max ;.

Now, we need another indexed binary variable, else if(i),
that will implement the logical AND of relax(i) and
relax2(i), i.e., else if(i) = 1 when x(i) does not belong
to both intervals. The logical AND of these two indexed
binary variables is implemented by (8). To prevent the trivial
solution of all 0s in else if(i), we will maximize it. This way,
else if(i) is 1 only when relax(i) and relax2(i) are 1.

∀i, 2 else if(i) ≤ relax(i) + relax2(i) (8)

The set of inequalities (8) is implemented in GAMS
syntax by the following line of code:

calc else if(i).. 2*else if(i)=l=relax(i)+relax2(i);.

Since the two disjoint inequalities of the OR expression
are true when relax(i) = 0 or relax2(i) = 0, we must negate
them and then multiply them by the respective associated
values. By the contrary, when x(i) is outside of the two
intervals, then else if(i) = 1, so we just multiply it by
value2. The attribution of values to TA(i) is implemented
by (9).

∀i, TA(i) = (1− relax(i)) value1

+ (1− relax2(i)) value0

+ else if(i) value2 (9)

The set of equations (9) is implemented in GAMS syntax
by the following line of code:

calc TA(i).. TA(i)=e=(1-relax(i))*value1 + (1-relax2(i)) *
value0 + else if(i) * value2;.

To simultaneously minimize relax(i) and relax2(i) and
maximize else if(i), we must add relax(i) and relax2(i) and
subtract else if(i) and then minimize the objective variable,
obj. This is implemented by (10). Since else if(i) appears
with a minus signal, the minimization is converted in maxi-
mization.

obj =

Nx∑
i=1

relax(i) + relax2(i)− else if(i) (10)

Equation (10) is implemented in GAMS syntax by the
following line of code:

calc obj.. obj=e=sum(i, relax(i))+sum(i, relax2(i))-sum(i,
else if(i));.

Finally in GAMS syntax we minimize obj and tell to the
system to use the Cplex solver:

Model CondIF /all/;
Solve CondIF minimizing obj using MIP;.

In Appendix C we show the complete GAMS code that
implements this second MILP model and in Appendix D we
show an output of a run of this model using using the Cplex
solver, with Nx = 50 elements, x min = 3, x max = 5,
value0 = 50, value1 = −5, value2 = −20 and max min =
100.

V. DESIGN AND IMPLEMENTATION OF A MILP MODEL
TO SOLVE THE CONDITONAL IF PROBLEM WITH N NON

OVERLAPPING INTERVALS

The solution of the conditional IF problem with N non
overlapping intervals is formalized by Algorithm 4. Next we
will describe the MILP model that solves this problem.

Algorithm 4 Conditonal IF Problem with N Non Overlapping
Intervals

for i = 1 to Nx do
x(i)← x par(i)

end for
for i = 1 to Nx do

flag ← 0
for k = 1 to N do

if x(i) ≥ x min(k) AND x(i) ≤ x max(k) then
flag ← 1
TA(i)← value(k)

end if
end for
if flag = 0 then
TA(i)← value0

end if
end for

Now we have N intervals, so we will have N values of
x min(j) and N values of x max(j) and the indexed binary
auxiliary relaxation variable will have two indexes, relax(i, j).
When relax(i, j) = 1 this means that x(i) does not belong to
the interval [x min(j) x max(j)] and so (11) and (12) are
relaxed. When relax(i, j) = 0 this means that x(i) belongs to
the interval [x min(j) x max(j)] and so (11) and (12) are
not relaxed. This works well because max min is big enough
and relax(i, j) will be minimized to prevent the trivial solution
of all 1s in this binary variable.



∀i, j, x(i) + max min relax(i, j) ≥ x min(j) (11)

The set of inequalities (11) is implemented by the
following line of GAMS code:

calc relax(i,j).. x(i) + max min * relax(i,j) =g= x min(j);.

Similarly, we must impose that when x(i) ≤ x max(j),
then relax(i, j) = 0. This is implemented by (12).

∀i, x(i) ≤ x max(j) + max min relax(i, j) (12)

The set of inequalities (12) is implemented by the
following line of GAMS code:

calc relax2(i,j).. x(i) =l= x max(j) + max min * relax(i,j);.

To identify the elements of x(i) that do not belong to any
of the N intervals we create an auxiliary indexed variable,
else if(i), that is 1 when all relax(i, j) = 1, j=1..N. This is
implemented by (13) and by the maximization of else if(i),
to prevent the trivial solution of all 0s in this binary variable.

∀i, N else if(i) ≤
N∑
j=1

relax(i, j) (13)

We can say that (13) implements the logical AND of all
relax(i, j) for a given i and varying j between 1 and N . This
is expressed by (14).

∀i, else if(i) =

N∏
j=1

relax(i, j) (14)

In the set of equations (14) the multiplication means the
logical AND. The set of inequalities (13) is implemented by
the following line of GAMS code:

calc else if(i).. N * else if(i) =l= sum(j, relax(i,j));.

Since when x(i) belongs to interval j, relax(i, j) = 0 and
all the remaining values of this binary variable, for this value
of i, are 1, the value(j) must be attributed to TA(i), and
when else if(i) = 1 all the relax(i, j) = 1 and the value
value out must be attributed to TA(i). This is implemented
by (15).

∀i, TA(i) = else if(i) value out +
N∑
j=1

(1− relax(i, j)) value(j) (15)

The set of equalities (15) is implemented by the following
line of GAMS code:

calc TA(i).. TA(i)=e= sum(j, (1-relax(i,j))*value(j)) +
else if(i) * value out;.

Finally we must solve this MILP model with the Cplex
solver and simultaneously minimize relax(i, j) and maximize
else if(i). This is implemented by (16), (17) and (18).

obj1 =
∑
i,j

relax(i, j) (16)

Equation (16) is implemented by the following line of
GAMS code:

calc obj1.. obj1=e=sum((i,j), relax(i,j));.

obj2 =
∑
i

else if(i) (17)

Equation (17) is implemented by the following line of
GAMS code:

calc obj2.. obj2=e=sum(i, else if(i));.

obj = obj1 − obj2 (18)

Equation (18) is implemented by the following line of
GAMS code:

calc obj.. obj=e=obj1 - obj2 ;.

Finally we obtain the solution of our MILP model with
the two following lines of GAMS code:

Model CondIF /all/;
Solve CondIF minimizing obj using MIP;

In Appendix E we present the complete GAMS code that
implements this MILP model and in Appendix F we present the
output of a run of this MILP model with Nx = 50 elements of
x(i), N = 7 intervals defined by [x min(1) = 5 x max(1) =
10], value(1) = 50, [x min(2) = 15 x max(2) = 20],
value(2) = −50, [x min(3) = 30 x max(2) = 40],
value(3) = 20, [x min(4) = 50 x max(4) = 60],
value(4) = 40, [x min(5) = 70 x max(5) = 80],
value(5) = 80, [x min(6) = 90 x max(6) = 100],
value(6) = 90, [x min(7) = 105 x max(7) = 115],
value(7) = 99, value out = −5 and max min = 200.

VI. CONCLUSIONS AND FUTURE WORK

We designed and implemented the solution of the condi-
tional IF problem with one argument interval with a linear
MILP model and then we generalize it for N non overlapping
intervals. Although we ran the third MILP model with a small
set of x(i), Nx = 50 elements, and with N = 7 intervals, in
the near future we will run this MILP model with greater Nx
and N to test the scalability of our MILP model.



REFERENCES
[1] J. Barahona da Fonseca, ”Solving Nonlinear Problems with MILP

Models,” in Proceedings of Escape-19 Conference, June 14-17, 2009,
Cracow, Poland, 2009, pp. 647-652

[2] ILOG, Cplex Users Manual. ILOG, 2003.
[3] A. Meeraus, ”Toward a General Algebraic Modelling System,” in Pro-

ceedings of IX. International Symposium on Mathematical Programming.
Budapest, Hungary. Mathematical Programming Society, 1976, pp. 185-
186.

APPENDIX A
IMPLEMENTATION OF THE FIRST MILP MODEL WITH

GAMS SYNTAX
set i /1*50/;

parameter x_par(i);

x_par(i)=3;

x_par(’1’)=5;
x_par(’3’)=6;
x_par(’4’)=7;
x_par(’6’)=6;
x_par(’8’)=10;
x_par(’9’)=4;

scalar x_min /5/
x_max /10/
value0 /50/
value1 /-5/
max_min /100/;

variable obj, TA(i), x(i);

binary variable relax(i);

equations

calc_x(i)
calc_relax(i)
calc_relax2(i)

calc_obj

calc_TA(i)
;

calc_x(i).. x(i)=e=x_par(i);

calc_relax(i).. x(i) + max_min * relax(i) =g= x_min;

calc_relax2(i).. x(i) =l= x_max + max_min * relax(i);

calc_TA(i).. TA(i)=e=(1-relax(i))*value0 + relax(i) * value1;

calc_obj.. obj=e=sum(i, relax(i));

Model CondIF /all/;

Solve CondIF minimizing obj using MIP;

display TA.l, obj.l, x.l, x_min, x_max, max_min, relax.l;

APPENDIX B
OUTPUT OF A RUN OF THE FIRST MILP MODEL

GAMS Rev 229 WIN-VIS 22.9.2 x86/MS Windows 03/24/18 13:23:34 Page 6
G e n e r a l A l g e b r a i c M o d e l i n g S y s t e m
E x e c u t i o n

---- 51 VARIABLE TA.L

1 50.000, 2 -5.000, 3 50.000, 4 50.000, 5 -5.000, 6 50.000
7 -5.000, 8 50.000, 9 -5.000, 10 -5.000, 11 -5.000, 12 -5.000
13 -5.000, 14 -5.000, 15 -5.000, 16 -5.000, 17 -5.000, 18 -5.000
19 -5.000, 20 -5.000, 21 -5.000, 22 -5.000, 23 -5.000, 24 -5.000
25 -5.000, 26 -5.000, 27 -5.000, 28 -5.000, 29 -5.000, 30 -5.000
31 -5.000, 32 -5.000, 33 -5.000, 34 -5.000, 35 -5.000, 36 -5.000
37 -5.000, 38 -5.000, 39 -5.000, 40 -5.000, 41 -5.000, 42 -5.000
43 -5.000, 44 -5.000, 45 -5.000, 46 -5.000, 47 -5.000, 48 -5.000
49 -5.000, 50 -5.000

---- 51 VARIABLE obj.L = 45.000

---- 51 VARIABLE x.L

1 5.000, 2 3.000, 3 6.000, 4 7.000, 5 3.000, 6 6.000
7 3.000, 8 10.000, 9 4.000, 10 3.000, 11 3.000, 12 3.000
13 3.000, 14 3.000, 15 3.000, 16 3.000, 17 3.000, 18 3.000
19 3.000, 20 3.000, 21 3.000, 22 3.000, 23 3.000, 24 3.000
25 3.000, 26 3.000, 27 3.000, 28 3.000, 29 3.000, 30 3.000
31 3.000, 32 3.000, 33 3.000, 34 3.000, 35 3.000, 36 3.000
37 3.000, 38 3.000, 39 3.000, 40 3.000, 41 3.000, 42 3.000
43 3.000, 44 3.000, 45 3.000, 46 3.000, 47 3.000, 48 3.000
49 3.000, 50 3.000

---- 51 PARAMETER x_min = 5.000
PARAMETER x_max = 10.000
PARAMETER max_min = 100.000

---- 51 VARIABLE relax.L

2 1.000, 5 1.000, 7 1.000, 9 1.000, 10 1.000, 11 1.000
12 1.000, 13 1.000, 14 1.000, 15 1.000, 16 1.000, 17 1.000
18 1.000, 19 1.000, 20 1.000, 21 1.000, 22 1.000, 23 1.000
24 1.000, 25 1.000, 26 1.000, 27 1.000, 28 1.000, 29 1.000
30 1.000, 31 1.000, 32 1.000, 33 1.000, 34 1.000, 35 1.000
36 1.000, 37 1.000, 38 1.000, 39 1.000, 40 1.000, 41 1.000
42 1.000, 43 1.000, 44 1.000, 45 1.000, 46 1.000, 47 1.000
48 1.000, 49 1.000, 50 1.000

APPENDIX C
IMPLEMENTATION OF THE SECOND MILP MODEL WITH

GAMS SYNTAX
set i /1*50/;
parameter x_par(i);
x_par(i)=2; x_par(’1’)=5; x_par(’2’)=4; x_par(’3’)=6; x_par(’4’)=7; x_par(’5’)=4;
x_par(’6’)=6; x_par(’7’)=4; x_par(’8’)=10; x_par(’9’)=4; x_par(’10’)=4; x_par(’11’)=4;
x_par(’12’)=4;
scalar x_min /3/
x_max /5/
value0 /50/
value1 /-5/
value2 /-20/
max_min /100/;
variable obj, TA(i), x(i);
binary variable relax(i), relax2(i), else_if(i);
calc_x(i).. x(i)=e=x_par(i);
calc_relax(i).. x(i) =l= x_min + max_min * relax(i);
calc_relax2(i).. x(i) + max_min * relax2(i) =g= x_max ;
calc_else_if(i).. 2*else_if(i)=l=relax(i)+relax2(i);
calc_TA(i).. TA(i)=e=(1-relax(i))*value1 + (1-relax2(i)) * value0 + else_if(i) * value2;

* if value0=value1 this will be equivalent to

* IF x(i) ge x_max OR x(i) le x_min THEN TA(i)=value1
calc_obj.. obj=e=sum(i, relax(i))+sum(i, relax2(i))-sum(i, else_if(i));
Model CondIF /all/;
Solve CondIF minimizing obj using MIP;
display TA.l, obj.l, x.l, x_min, x_max, max_min, relax.l, relax2.l;

APPENDIX D
OUTPUT OF A RUN OF THE SECOND MILP MODEL

GAMS Rev 229 WIN-VIS 22.9.2 x86/MS Windows 02/20/18 20:00:34 Page 6
G e n e r a l A l g e b r a i c M o d e l i n g S y s t e m
E x e c u t i o n

---- 71 VARIABLE TA.L

1 -5.000, 2 -20.000, 3 -5.000, 4 -5.000, 5 -20.000
6 -5.000, 7 -20.000, 8 -5.000, 9 -20.000, 10 -20.000
11 -20.000, 12 -20.000, 13 50.000, 14 50.000, 15 50.000
16 50.000

---- 71 VARIABLE obj.L = 16.000

---- 71 VARIABLE x.L

1 5.000, 2 4.000, 3 6.000, 4 7.000, 5 4.000, 6 6.000
7 4.000, 8 10.000, 9 4.000, 10 4.000, 11 4.000, 12 4.000
13 2.000, 14 2.000, 15 2.000, 16 2.000

---- 71 PARAMETER x_min = 3.000
PARAMETER x_max = 5.000
PARAMETER max_min = 100.000

---- 71 VARIABLE relax.L

1 1.000, 2 1.000, 3 1.000, 4 1.000, 5 1.000, 6 1.000
7 1.000, 8 1.000, 9 1.000, 10 1.000, 11 1.000, 12 1.000

---- 71 VARIABLE relax2.L

2 1.000, 5 1.000, 7 1.000, 9 1.000, 10 1.000, 11 1.000
12 1.000, 13 1.000, 14 1.000, 15 1.000, 16 1.000

---- 71 VARIABLE else_if.L

2 1.000, 5 1.000, 7 1.000, 9 1.000, 10 1.000, 11 1.000
12 1.000

---- 71 VARIABLE TA.L

1 -5.000, 2 -20.000, 3 -5.000, 4 -5.000, 5 -20.000
6 -5.000, 7 -20.000, 8 -5.000, 9 -20.000, 10 -20.000
11 -20.000, 12 -20.000, 13 50.000, 14 50.000, 15 50.000
16 50.000

APPENDIX E
MILP MODEL FOR THE SOLUTION OF THE CONDITIONAL

IF PROBLEM WITH N INTERVALS
scalar N /7/;

set i /1*50/



j /1*7/;

* We must have N=card(j)

parameter x_par(i), x_min(j), x_max(j), value(j);

x_min(j)=0;
x_max(j)=0;
value(j)=0;

x_min(’1’)=5;
x_max(’1’)=10;

x_min(’2’)=15;
x_max(’2’)=20;

x_min(’3’)=30;
x_max(’3’)=40;

x_min(’4’)=50;
x_max(’4’)=60;

x_min(’5’)=70;
x_max(’5’)=80;

x_min(’6’)=90;
x_max(’6’)=100;

x_min(’7’)=105;
x_max(’7’)=115;

value(’1’)=50;
value(’2’)=-50;
value(’3’)=20;
value(’4’)=40;
value(’5’)=80;
value(’6’)=90;
value(’7’)=99;

x_par(i)=3;

x_par(’1’)=2;
x_par(’3’)=6;
x_par(’4’)=7;
x_par(’5’)=8;
x_par(’6’)=6;
x_par(’8’)=2;
x_par(’9’)=4;
x_par(’10’)=16;
x_par(’11’)=17;
x_par(’12’)=18;
x_par(’13’)=19;
x_par(’14’)=20;

x_par(’15’)=3;
x_par(’16’)=31;
x_par(’17’)=32;
x_par(’18’)=33;
x_par(’19’)=34;
x_par(’20’)=35;

x_par(’21’)=3;
x_par(’22’)=55;
x_par(’23’)=57;
x_par(’24’)=58;
x_par(’25’)=60;

x_par(’26’)=3;
x_par(’27’)=71;
x_par(’28’)=72;
x_par(’29’)=73;
x_par(’30’)=74;
x_par(’31’)=75;
x_par(’32’)=76;
x_par(’33’)=77;

x_par(’34’)=3;
x_par(’35’)=91;
x_par(’36’)=92;
x_par(’37’)=93;
x_par(’38’)=94;
x_par(’39’)=95;
x_par(’40’)=96;
x_par(’41’)=97;
x_par(’42’)=100;

x_par(’43’)=3;
x_par(’44’)=107;
x_par(’45’)=109;
x_par(’46’)=111;
x_par(’47’)=113;
x_par(’48’)=115;

*x_par(’49’)=18;

scalar value_out /-5/
max_min /200/;

variable obj, obj1, obj2, TA(i), x(i);

binary variable relax(i,j), else_if(i);

equations

calc_x(i)
calc_relax(i,j)
calc_relax2(i,j)

calc_obj1
calc_obj2
calc_obj

calc_TA(i)

calc_else_if(i)

;

calc_x(i).. x(i)=e=x_par(i);

calc_relax(i,j).. (x(i) + max_min * relax(i,j)) =g= x_min(j);

calc_relax2(i,j).. x(i) =l= (x_max(j) + max_min * relax(i,j));

calc_else_if(i).. N * else_if(i) =l= sum(j, relax(i,j));

calc_TA(i).. TA(i)=e= sum(j, (1-relax(i,j))*value(j)) + else_if(i) * value_out;

calc_obj1.. obj1=e=sum((i,j), relax(i,j));

calc_obj2.. obj2=e=sum(i, else_if(i));

calc_obj.. obj=e=obj1 - obj2 ;

Model CondIF /all/;

Solve CondIF minimizing obj using MIP;

display obj.l, obj1.l, obj2.l, x_min, x_max, value, value_out, max_min, TA.l, x.l;

APPENDIX F
OUTPUT OF THE RUN OF THE MILP MODEL FOR THE

SOLUTION OF THE CONDITIONAL IF PROBLEM WITH N
INTERVALS WITH GAMS SOFTWARE

GAMS Rev 229 WIN-VIS 22.9.2 x86/MS Windows 03/12/18 15:20:56 Page 6
G e n e r a l A l g e b r a i c M o d e l i n g S y s t e m
E x e c u t i o n

---- 146 VARIABLE obj.L = 300.000
VARIABLE obj1.L = 312.000
VARIABLE obj2.L = 12.000

---- 146 PARAMETER x_min

1 5.000, 2 15.000, 3 30.000, 4 50.000, 5 70.000, 6 90.000
7 105.000

---- 146 PARAMETER x_max

1 10.000, 2 20.000, 3 40.000, 4 60.000, 5 80.000, 6 100.000
7 115.000

---- 146 PARAMETER value

1 50.000, 2 -50.000, 3 20.000, 4 40.000, 5 80.000, 6 90.000
7 99.000

---- 146 PARAMETER value_out = -5.000
PARAMETER max_min = 200.000

---- 146 VARIABLE TA.L

1 -5.000, 2 -5.000, 3 50.000, 4 50.000, 5 50.000
6 50.000, 7 -5.000, 8 -5.000, 9 -5.000, 10 -50.000
11 -50.000, 12 -50.000, 13 -50.000, 14 -50.000, 15 -5.000
16 20.000, 17 20.000, 18 20.000, 19 20.000, 20 20.000
21 -5.000, 22 40.000, 23 40.000, 24 40.000, 25 40.000
26 -5.000, 27 80.000, 28 80.000, 29 80.000, 30 80.000
31 80.000, 32 80.000, 33 80.000, 34 -5.000, 35 90.000
36 90.000, 37 90.000, 38 90.000, 39 90.000, 40 90.000
41 90.000, 42 90.000, 43 -5.000, 44 99.000, 45 99.000
46 99.000, 47 99.000, 48 99.000, 49 -5.000, 50 -5.000

---- 146 VARIABLE x.L

1 2.000, 2 3.000, 3 6.000, 4 7.000, 5 8.000
6 6.000, 7 3.000, 8 2.000, 9 4.000, 10 16.000
11 17.000, 12 18.000, 13 19.000, 14 20.000, 15 3.000
16 31.000, 17 32.000, 18 33.000, 19 34.000, 20 35.000
21 3.000, 22 55.000, 23 57.000, 24 58.000, 25 60.000
26 3.000, 27 71.000, 28 72.000, 29 73.000, 30 74.000
31 75.000, 32 76.000, 33 77.000, 34 3.000, 35 91.000
36 92.000, 37 93.000, 38 94.000, 39 95.000, 40 96.000
41 97.000, 42 100.000, 43 3.000, 44 107.000, 45 109.000
46 111.000, 47 113.000, 48 115.000, 49 3.000, 50 3.000


