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Abstract 

This study focuses on the machine learning bias when predicting teacher grades. The experimental 

phase consists of predicting the student grades of 11th and 12th grade Portuguese high school grades 
and computing the bias and variance decomposition. In the base implementation, only the 

academic achievement critical factors are considered. In the second implementation, the preceding 

year’s grade is appended as an input variable. The machine learning algorithms in use are random 
forest, support vector machine, and extreme boosting machine. The reasons behind the poor 

performance of the machine learning algorithms are either the input space poor preciseness or the 

lack of a sound record of student performance. We introduce the new concept of knowledge bias 
and a new predictive model classification. Precision education would reduce bias by providing 

low-bias intensive-knowledge models. To avoid bias, it is not necessary to add knowledge to the 

input space. Low-bias extensive-knowledge models are achievable simply by appending the 
student’s earlier performance record to the model. The low-bias intensive-knowledge learning 

models promoted by precision education are suited to designing new policies and actions toward 

academic attainments. If the aim is solely prediction, deciding for a low bias knowledge-extensive 
model can be appropriate and correct. 
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1- Introduction 

Precision education stems directly from the concept of precision medicine [1]. Tuning medical treatment and health 

prevention based on detailed information about genetics, environment, and lifestyle constraints is the main motivation 

for developing the precision medicine conceptual framework [2]. Similarly, the definition of tailored educational 

practices hinges on detailed data on a student’s genetic, neuronal, psychological, and environmental traits. As long as 

the learning process is perceived as the result of the joint dynamics amongst biological, genetic, and neuronal traits, and 

social and cultural pathways, it is appropriate to define precision education as an emergent interdisciplinary research 

field at the intersection of the social sciences and biology [3]. The constant collection and processing of sensitive 

personal data are paramount and go far beyond personalized learning, which tends to be restricted to the analysis of 

students’ progress and results [4]. 

As it is with precision medicine, precision education raises important ethical questions. Data protection and personal 

privacy are obvious concerns in light of the emphasis on biological determinants [5]. It is therefore appropriate to take 

into account both the effectiveness and the risk associated with the most invasive precision technologies and tools, such 

as brain data collection neuro-technologies, genetic testing, and new personality and non-cognitive competencies tests. 
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Precision education presupposes an extensive database of the critical factors that influence the students’ Academic 

Achievement (AA). In addition to the introduction of biological factors, it requires sharpening the metrics currently in 

use and improving their representative intake. Advanced data analytics will be needed to evaluate their importance and 

influence on AA, and machine learning algorithms will be used extensively for their greater predictive ability. The 

comprehensive and continuous data collection that is paramount in the precision education framework is an extension 

of the ongoing datafication process of the 21st century digital economy, perceived as a perpetual cycle of capital 

accumulation [6]. 

As precision education arose with the prospect of seriously augmenting the predictive ability of machine learning 

algorithms to anticipate teachers' grades and test scores, the present study focuses on ascertaining the specificities of the 

machine learning bias in the AA scientific domain. With no purpose of neglecting the profound ethical issues in letting 

an algorithm shape the future of human beings alone [7], the lack of success in using predictive models to assign grades 

also seems to corroborate the appropriateness of studying the machine learning bias. A remarkable example is the 2020 

International Baccalaureate final exam [8]. Due to the SARS-Cov-2 pandemic crisis, the International Baccalaureate, an 

educational organization from Geneva that offers a worldwide high school program, has decided not to hold the final 

exam in 2020. Instead, the final scores were awarded by an algorithm that failed miserably, despite being allegedly 

based on the coursework and schools’ predicted grades. Therefore, this study sheds light on both the structure of the 

machine learning bias that is bound to appear when predicting grades and the likely precision education effect on the 

performance of the algorithms. 

We introduce the knowledge bias concept that fills an important gap in the predictive model classification. The 

knowledge space comprises every known and unknown critical factor that exerts some influence on the target concept 

[9]. The knowledge bias appears as the divergence between the input space composed by the actual critical factors in 

use and that theoretical optimal space. Depending on the low or high knowledge bias, a model is classified as an 

intensive-knowledge or extensive-knowledge model, respectively. The latter is suited only to evaluate the execution of 

policies and actions in a post-inception phase. When conceiving and planning, only intensive knowledge learning models 

are appropriate to assist the decision process of which critical factors should be swayed to produce the desired results. 

The knowledge bias is most important for classifying machine learning implementations in the social sciences, in which 

the longitudinal regularity of the target concept behaviour is stronger and the knowledge about the critical factors is 

weaker. 

The conclusions are drawn from the simultaneous analysis of two different implementations, a base implementation 

relying on a feature space that includes only the variables related to the AA critical factors, and a second implementation 

in which the one-year lagged grade of the student is appended, emphasizing the influence of the student´s historical path. 

Bearing that in mind, we carry out various random forest, support vector machine, and extreme boosting machine 

regressors implementations not only to predict the grades (attributed by teachers) of 11th and 12th grade students in 

Portuguese public high schools but also to compute the bias and variance decomposition through a bootstrap procedure. 

In addition, we use the knowledge bias concept to feed the discussion and to build the conclusions. A Lasso procedure 

is used to select the input space variables along with a random forest feature importance structure analysis to 

operationalize the concept of knowledge bias. The research questions are the following: 

 What are the factors that can explain the underperformance of machine learning algorithms when predicting 

student grades? 

 Is precision education bound to improve machine learning bias when predicting grades? 

 Is the machine learning bias an unbiased indicator of the model embedded knowledge? 

The remainder of this paper is organized as follows: Section two proceeds with an AA critical factors literature review 

and presents the machine learning implementations that are appearing in the domain; Section three describes the 

methodology, the machine learning algorithms, and the research process in detail. Section four begins by presenting the 

data and how they were collected and organized. Then the results are shown and interpreted concerning the hyper-

parameter optimization, the prediction, the bias and variance decomposition, and the knowledge intensity of the 

implementations. The duality between the implementations in terms of the generalization error and bias is demonstrated 

and compared with their incorporated knowledge. Section five discusses the results and introduces the knowledge bias 

concept as a means of differentiating effects and functions of the models. Finally, Section six presents the main 

conclusions and answers the research questions directly. 

2- Literature Review 

The literature has extensively confirmed the student’s cognitive ability as the main determinant of AA [10, 11]. 

However, on average, it leaves unexplained 51-75% of the total variance [12].  Males more often develop a negative 

peer attitude toward school [13], corroborating the empirical evidence of a gender gap in favour of females that reaches 

high visibility in linguistics, although lower in mathematics [14–16]. Indeed, a personal attitude with an adequate level 
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of diligence, organization, focus, and resilience is conducive to overachievement [17]. The AA can vary according to 

ethnicity, as in the US, where white students seem to outperform consistently [18]. A similar gap can be found regarding 

immigrant groups [19]. Low Socioeconomic Status (SES) immigrant students from small communities whose parents 

have left their home countries due to political entanglements normally underperform [20]. 

Using the internet and personal computer to learning tasks easiness, attractiveness and diversification favours AA 

[21, 22]. However, if used excessively for leisure activities the use can be detrimental [23]. Parents’ participation in the 

school activities motivates their children to outperform [24, 25] and is especially important amongst lower SES students 

[26]. The parental involvement forges a suitable and convenient attitude toward teachers and school tasks [27]. There is 

empirical evidence that supports a positive relationship between SES and AA [28, 29], magnifying the role played by a 

convenient endowment of social and cultural capital. Steinmayr et al. (2010) [30] show that parents’ education is 

positively associated with AA even after controlling for student intelligence and personality. Using a concept of SES 

that includes parental education and occupation, household size, and possessions, Tesfagiorgis et al. (2020) [31] 

conclude that there is a positive association between SES and AA. Tomul and Savasci (2012) [32] found that parental 

educational status and the average income per capita were important positive factors related to AA. 

The association between AA and class size is not straightforward. Hoxby (2000) [33] estimated that class size does 

not have a statistically significant effect on AA. Krueger (1999) [34] found otherwise – that the class size has a generally 

negative effect on AA and is stronger for minority students and those of lower SES. Wößmann and West (2006) [35] 

studied the effect of class size in 11 countries and concluded that its magnitude depends on the educational system itself 

and the teachers’ lecturing abilities. In a less controversial stand, smaller schools seem to improve the academic 

outcomes of both lower SES students and those with greater learning needs [36, 37]. Schneider (2002) [38] highlighted 

the importance of schools’ indoor environmental conditions such as noise, light, temperature, and comfort for teachers 

and students alike to be properly motivated. Furthermore, the architectural features of the school should embody the 

expectations of the school participants [39].  

Lecturing ability inferred by panel data fixed effects emerges as a positive factor on AA [40, 41]. Rivkin et al. (2005) 

[42] concluded that the teachers’ fixed effects on the 9th-grade math test score were substantial and educationally 

relevant. It is argued that the teacher’s role in the AA is to a great extent related to unobservable personal characteristics 

and that the experience and education level of teachers have a minor role. In turn, Wayne & Youngs (2003) [43] add 

that teachers’ college grades seem to be positively correlated to AA. Last, the teacher quality has not only a short term 

but also a long term positive effect on the student academic outcomes [44]. 

In the AA literature some studies have used machine learning algorithms to substantiate their conclusions (Table 1). 

However, there is a clear preference for solving classification instead of regression problems [45], and to the best of the 

authors’ knowledge no published studies addressing bias and variance decomposition exist. 

Table 1. Machine learning studies. 

References Data Methods Target 

Costa-Mendes et al., 

(2020) [46] 

362,127 High 

School Teacher 

Grades 

Multilinear regression, random forest, support vector machine, 

artificial neural network, and extreme gradient boosting machine 

stacking ensemble. 

High school end of the year 

teacher grades 

Cruz-Jesus et al. (2020) 

[47] 

110,267 High 

School Students 

Artificial neural network, decision tree, extremely randomized 

trees, random forest, support vector machine, k-nearest neighbours, 

and logistic regression classifiers. 

High school retentions 

Miguéis et al. (2018) [48] 
2,459 Higher 

Education Students 

Naïve Bayes, support vector machine, decision tree, random forest, 

bagged trees, and adaptive boosting trees classifiers. 
Five classes of achievement 

Musso et al. (2020) [49] 
655 University 

Students 
Artificial neural network classifier 

Low and high levels of three 

different measures of AA 

Mengash (2020) [50] 2,039 Students 
Artificial neural network, decision tree, support vector machine and 

naïve Bayes classifiers. 

Evaluating the admission 

criteria of a Saudi University 

Sorensen (2019) [51] 220,685 Students Decision tree and support vector machine classifiers. School dropout 

3- Research Methodology 

3-1- Supervised Learning Algorithms 

Supervised learning consists of finding a mathematical function that efficiently maps the predictive variables input 

space into the target variables output space. In the learning phase a supervised learning algorithm uses the actual 

association between input and output variables to build a machine able to approximate the target outputs from the simple 

awareness of the input variables. Supervised learning is used for solving classification problems, in which the target 

variables are binary, and regression problems, in which the target variables are continuous [52]. 
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For each dataset 70% of the examples were assigned to training and 30% to testing. A training set standardization 

procedure of the input variables was carried out and subsequently applied to the corresponding test set. In the learning 

phase the model is built upon the training dataset and is further evaluated in terms of generalization error on the holdout 

test set. In parallel, a four-fold cross-validation procedure on the training set was carried out to evaluate its consistency 

with the test dataset. Furthermore, as the 10th high school year’s dataset was used specifically for both the Lasso feature 

selection procedure and the hyperparameter tuning, the cross-validation and the bias and variance decomposition 

bootstrap are virtually unbiased. 

Before the training phase, the algorithms’ hyperparameters were optimized through a four-fold cross-validation 

procedure [53, 54]. As soon as the hyperparameters to be optimized were selected, a search space was built, and a 

random grid search [55, 56] was carried out. The hyperparameters’ combination that maximizes the algorithms’ four-

fold average performance was picked and further used in training, evaluation, and the bias and variance decomposition. 

The algorithms’ implementations follow the scikit-learn python module documentation [57]. 

3-1-1- Random Forest 

The Random Forest (RF) [58] is a randomized decision tree ensemble resulting from a bootstrap aggregating 

procedure. In the decision tree algorithm the input space is broken successively in a way that minimizes a cost function, 

normally purity-linked in case of a classification and pattern recognition, or the mean square error in case of regression. 

In each step, usually a pair of new nodes representing two different subsets of the input space is created. In a randomized 

decision tree the input variables that take part in the optimized split decision are selected randomly [59]. The partition 

process ends when the cost function gains are no longer perceived as significant. The final nodes are called leaves and 

deliver the decision rules guiding the target variable estimation and prediction. The random forest ensembles the 

randomized decision trees by majority vote in case of classification or by computing their scores’ mean in case of 

regression. 

3-1-2- Support Vector Regression 

The Support Vector Regression (SVR) algorithm’s main intention is to find a function that approximates a continuous 

target variable with a deviation not exceeding 𝜀 ∈ ℝ+ [60]. In the soft margin SVR, some flexibility is added that 

augments the algorithm generalization ability by allowing a deviation beyond 𝜀 ∈ ℝ+at a cost of 𝐶 through the 

introduction of slack variables 𝜉 ≥ 0. For the primal form of the SVR optimization problem see, e.g., Mohri et al. (2018) 

[53]. 

The SVR Lagrange multiplier dual form of the mathematical optimization problem [61] highlights two fundamental 

characteristics of the algorithm. The approximated function depends solely on the inner products between the examples 

that lie outside the 𝜀-tube – the support vectors – and every actual example, whichever the feature space used to represent 

them in. In our case and to add a nonlinear character to the approximation, the gaussian radial basis function (RBF) 

kernel was applied to compute the inner products of an extrapolated infinite-dimensional space. 

3-1-3- Extreme Gradient Boosting Machine 

Boosting is a machine learning ensemble method like bagging. Boosting consists of building a strong learner by 

training several weak learners in different training sets [62]. The main differences rely on both the training set resampling 

process, which is built specifically to generate complementary learning, and on the weak learner weights assignment, 

which is based on performance [63]. Essentially, and contrary to the case of bagging, the sample probability distribution 

is changed in each iteration to allow the next weak learners to focus on reducing the bias in the preceding worst-

performing examples. The gradient boosting machine [54, 64] creates a chain in which each weak learner is moulded to 

minimize the generalization error of the previous iteration. In our case, the weak learners are regression decision trees, 

and the loss function is the square loss. To improve robustness, the extreme gradient boosting (XGB) machine [65] adds 

to the decision trees gradient boosting framework two regularization hyperparameters that control the size and the 

magnitude of the trees’ scores. 

3-2- Bias and Variance Decomposition for Regression 

The following bias and variance decomposition is based on Mehta et al. (2019) [66]. Consider a target random 

variable 𝑦 that can be approximated from a vector of independent variables 𝑋 as follows: 

𝑦 = 𝐹(𝑋; 𝜃) + 𝜀                                                                                                                                                                                   (1) 

where 𝜀 is an irreducible stochastic term, 𝐹 is the unknown real function that maps 𝑋 into 𝑦 and 𝜃 is a vector of 

parameters. 

Suppose that a dataset 𝐷𝑁 = (𝑋, 𝑦) was randomly drawn from the population and a statistical learning procedure was 

carried out to estimate 𝐹. In regression, the square error is normally elected as the estimation cost function: 



Emerging Science Journal | Vol. 5, No. 5 

Page | 580 

𝐶(𝑦, 𝐹(𝑋; 𝜃)) = ∑ (𝑦𝑖 − 𝐹(𝑋𝑖; 𝜃))2
𝑖                                                                                                                                                (2) 

The optimization problem underlying the parameters’ estimation can be formalized as follows: 

�̂�𝐷𝑁 = 𝑎𝑟𝑔𝑚𝑖𝑛[𝜃, 𝐶(𝑦, 𝐹(𝑋; 𝜃))]                                                                                                                                                   (3) 

Every dataset 𝐷𝑗
𝑁 = (𝑦𝑗 , 𝑋𝑗) that can be randomly drawn from the population produces a different �̂�𝐷𝑁 and a specific 

value for the cost function. The cost function expected value for unseen data prediction, i.e., not belonging to the actual 

𝐷𝑁 = (𝑋, 𝑦) that was used to learn, comes as follows: 

𝐸𝐷,𝜀 {𝐶 (𝑦, 𝐹(𝑋; �̂�𝐷𝑁))}

= ∑(𝐹(𝑋𝑖; 𝜃) − 𝐸𝐷{𝐹(𝑋𝑖; �̂�𝐷𝑁)})
2

𝑖

+ ∑ 𝐸𝐷

𝑖

{(𝐹(𝑋𝑖; �̂�𝐷𝑁) − 𝐸𝐷{𝐹(𝑋𝑖; �̂�𝐷𝑁)})
2

}

+ ∑ 𝐸𝜀

𝑖

{(𝑦𝑖 − 𝐹(𝑋𝑖; 𝜃))
2

} 

(4) 

𝐸𝐷,𝜀 {𝐶 (𝑦, 𝐹(𝑋; �̂�𝐷𝑁))} = 𝐵𝑖𝑎𝑠2 + 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝑁. 𝜎2
𝜀 (5) 

where the bias measures the deviation of the model’s expected value relative to the true value. In turn, the variance 

measures the model estimates sensitivity to sample variations. And finally, the irreducible variance refers to the 

structural noise that is inherent to the target variable. There is an empirical trade-off between bias and variance [54]. 

Although complex functions are being approximated, small training sets may require simple models that nonetheless 

asymptotically biased perform better in unseen data. A 200 samples train dataset bootstrap [67] was employed and the 

bias and variance decomposition upon the applicable test dataset was computed. The mean square error cost function 

was decomposed instead of the square error: 

𝑚𝑠𝑒 = 𝑚𝑒𝑎𝑛{𝐵𝑖𝑎𝑠2 + 𝑁. 𝜎2
𝜀} + 𝑚𝑒𝑎𝑛{𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒}                                                                                                                 (6) 

Note that as the true function 𝐹(𝑋𝑖; 𝜃) in Equation 5 is unknown, the bias and the irreducible variance cannot be 

empirically separated. 

3-3- Feature Selection 

Before the algorithms’ hyperparameters tuning, an optimization procedure of the input space was undertaken, 

consisting of selecting the predictive variables according to the strength of their association with the target variable. The 

Lasso multilinear regression model [68] was used, comprising a classic multilinear regression and an L1 norm 

regularization term that exerts some pressure on the less important regression coefficients to converge to zero.  

(𝛼,̂ �̅̂�, 𝜆) = 𝑎𝑟𝑔 𝑚𝑖𝑛 {∑ (𝑦𝑖 − 𝛼 − ∑ 𝛽𝑗𝑥𝑖𝑗
𝑝
𝑗=1 )

2𝑁
𝑖=1 + 𝜆 ∑ |𝛽𝑗|

𝑝
𝑗=1 }                                                                                            (7) 

Through a four-fold cross-validation search grid procedure, the highest shrinkage pressure λ model, whose cost 

function was not higher than the optimum plus its cross-validation standard deviation, was picked and the null 𝛽�̂� 

variables were subsequently discarded. The model knowledge intensity can be inferred from the input space dimension, 

the number of critical factors in the model. 

3-4- Methodology Steps 

The order of the methodology’s steps is the following (Figure 1): 

 To select the variables of the input space, we used the Lasso multilinear regression model, the base implementation, 

and the 10th-grade dataset. 

 To take into account any latent procedural bias, we used three different machine learning algorithms: the random 

forest, the support vector regression, and the extreme boosting machine. As the first is a bootstrapping ensemble, 

the second is a kernelized linear model, and the third is a boosting ensemble, we believe that together they constitute 

a comprehensive set of algorithms. 

 To tune the hyperparameters, we performed the following sub-steps using the base implementation and the 10th-

grade dataset: 

o We built a search space of hyperparameters to be optimized. 

o Then, we carried out a random grid search embedded in a four-fold cross-validation procedure. 
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o Finally, we selected the hyperparameters’ combination that maximizes the algorithms’ four-fold average mean 

absolute error (MAE). 

 The training-test split was carried out at the grade level, assigning 70% of the examples to training and 30% to 

testing. The training dataset was standardized and the test dataset was transformed accordingly. 

 The models were trained and their generalization error computed on the holdout test set. In addition, a four-fold 

cross-validation on the training set was used to evaluate its consistency with the test set. 

 We made use of a bootstrap procedure to compute the bias and variance decomposition: 

o We generated 200 models from 200 subsamples of the training dataset [69]. 

o With those models, we predicted the grades of the test dataset 200 times. 

o Then, we computed the mean square error (MSE) and the variance of those predictions. 

o Finally, we assigned to bias the difference between them. 

 The knowledge intensity of a model was deduced from the number of relevant variables that are associated with the 

critical factors and from the structure of the random forest feature importance. We applied the Lasso multilinear 

regression model to the entire set of variables, using both base and second implementations and both 11th grade and 

12th-grade datasets, aiming at finding the variables that are sufficiently important to participate in the learning 

model. Subsequently, we computed their random forest feature importance and aggregated them according to the 

related critical factor. 

We specifically used the 10th-grade dataset to select the variables and to tune the hyperparameters to ensure the 

robustness of the bias and variance decompositions. 

 

Figure 1. Methodological flowchart. 

4- Data and Results 

4-1- Data 

The experimental data come mainly from the Directorate-General for Statistics of Education and Science of the 

Portuguese Ministry of Education information system. The system was designed to assist the administrative management 

of the Portuguese public education system and to store information about students, schools, and teachers from pre-school 

and basic to high school. Through a series of Microsoft® SQL Server Management Studio queries it was possible to 

build a global dataset consisting of 96,346 grades from 10,364 high school historical student paths. It includes 

observations from 2014-2015 to 2017-2018 academic years. The subjects were aggregated into four classes, Portuguese 

language, foreign languages, quantitative and natural sciences, human and social sciences. A split into 10th, 11th, and 

12th grades was also carried out to feed the intended implementations (see Table 2). 
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Table 2. Dataset. 

Subject Class Grade 
Samples 

n 

Portuguese Portuguese  45,043 

English 

Foreign Languages 

 

7,465 
Spanish  

French  

German  

Mathematics 

Quantitative and natural sciences 

 

30,098 

Physics  

Chemistry  

Biology and Geology  

Geography  

Descriptive Geometry  

Design  

Philosophy 

Human and social sciences 

 

13,740 History  

Economics  

  10th 32,706 

  11th 32,396 

  12th 31,244 

Total   96,346 

The dataset is composed of 40 features that are related to the AA critical factors identified in the literature review 

(see Table 3 and Annex for full feature description). The family non-classic dwellings, the collective dwellings, the 

literacy rate, the post-secondary schooling rate, the primary sector importance, the secondary sector importance, and the 

unemployment rate were retrieved from Statistics Portugal. Given the categorical features one-hot encoding procedure, 

the number of predictive variables available to be selected by the Lasso filter added up to 120. 

Table 3. Features and variables. 

Feature Literature AA critical factor Data Type # variables 

Subjects N.A. Categorical 3 

Retentions Cognitive ability Integer 1 

Enrolments Cognitive ability Integer 1 

Gender Gender Categorical 1 

Father nationality Ethnicity Categorical 6 

Computer Computer usage Binary 1 

Internet Internet usage Binary 1 

Job situation SES Binary 1 

Education guardian SES Categorical 4 

Guardian job educational level SES Categorical 4 

Father job educational level SES Categorical 4 

Mother job educational level SES Categorical 4 

Guardian job situation SES Categorical 8 

Father job situation SES Categorical 8 

Mother job situation SES Categorical 8 

Guardian educational level SES Categorical 11 

Father educational level SES Categorical 11 

Mother educational level SES Categorical 11 

Scholarship SES Categorical 2 
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Parish SES Binary 1 

County SES Binary 1 

Family non-classic dwellings SES Percentage 1 

Collective dwellings SES Percentage 1 

Illiteracy rate SES Percentage 1 

Post-secondary schooling rate SES Percentage 1 

Primary sector importance SES Percentage 1 

Secondary sector importance SES Percentage 1 

Unemployment rate SES Percentage 1 

School size School size Integer 1 

Class size Class size Integer 1 

Teacher professional category Lecturing quality Categorical 6 

Teacher educational level Lecturing quality Categorical 3 

Teacher career step Lecturing quality Categorical 3 

Teacher gender Lecturing quality Categorical 1 

Temporary replacement Lecturing quality Binary 1 

Educative support Lecturing quality Binary 1 

Teacher age Lecturing quality Integer 1 

Lecturing time Lecturing quality Integer 1 

Non-lecturing time Lecturing quality Integer 1 

Educative support time Lecturing quality Integer 1 

Teacher grade Target variable Integer  

   120 

4-2- Results 

4-2-1- Feature Selection 

A shrinkage pressure λ of 0.02 was used for the feature selection and 56 variables were subsequently dropped (Figure 

2). The most important dropped variables were the internet usage, parish literacy rate, post-secondary schooling rate, 

and primary sector importance. The internet usage is strongly correlated with the computer usage and the shrinkage 

pressure tends to reject the weakest. The parish literacy rate, post-secondary schooling rate, and primary sector 

importance belong to a set of seven SES variables retrieved from Statistics Portugal. The dropping of the other variables 

corresponds to the clustering of homogeneous feature categories in terms of effect on the AA. 

 

Figure 2. Feature selection. 
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4-2-2- Hyperparameter Optimization 

The initial search space and the four-fold cross-validation random grid search results are shown in Table 4. The 

random grid search had 200 trials for each algorithm. The goal of the procedure is to minimize the cross-validation mean 

absolute error. According to the hyperparameter optimization procedure, the RFs were built from a 100% bootstrap of 

420 trees. Two restrictions were imposed. First, the minimum number of examples required to be at a leaf could not be 

less than 0.009 of the dataset’s length. Second, the minimum number of samples required to split an internal node could 

not be less than 0.001. The SVR hyperparameter optimization procedure set the penalty C to 9.541, and the RBF kernel 

𝛾 to 0.004. Concerning the XGB, the procedure set the number of trees to 156, the subsample and column subsample to 

1, the maximum tree depth to 20, the boosting learning rate to 0.42, the L2 regularization term on weights λ to 0.4, and 

the minimum number of instances in a child to 131. 

Table 4. Hyperparameter search space 

Algorithm Hyperparameter Minimum Maximum Cardinality Best 

RF 

n_estimators 300 700 11 420 

min_samples_leaf 0.001 0.05 50 0.009 

min_samples_split 0.001 0.05 50 0.001 

Bootstrap False True 2 True 

SVR 
C 0.0001 100 50 9.541 

Γ 0.0001 100 50 0.004 

XGB 

max_depth 2 10 5 20 

min_child_weight 0 0.02 7 131 

Subsample 0.4 1 6 1 

colsample_bytree 0.4 1 6 1 

learning rate 0.01 1 198 0.42 

Λ 0 20 17 0.4 

num_boost_round 1 999 999 155 

The XGB performance was substantially improved by the hyper-optimization as shown by the large dispersion of the 

trial points on the scatter plot of Figure 3. The RF performance did not change greatly from trial to trial, inducing a 

concentrated cloud of points in the scatter plot. The SVR had a behaviour more in line with the RF than the XGB despite 

exhibiting a tendency to a higher overfitting. 

 

Figure 3. Random search trials 
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The average performances of the three algorithms were very similar (Figure 4). The RF had the smallest average 

MAE and the XGB the largest. In contrast, the MAE of the RF best trial, the elected hyperparameter combination, was 

2.0377, while in the XGB was only 1.9073. The SVR fell into the middle with 2.0337. The flatness of the XGB empirical 

distribution curve in Figure 4 also highlights the bias focus of the algorithm. 

 

Figure 4. Search trials distributions. 

The elected hyperparameter combinations are within the surface of the search spaces far from the edges, ensuring 

that at least a local optimum was reached. 

4-2-3- Prediction Training Phase 

To evaluate the algorithms’ performance, the MSE, the MAE, and the coefficient of determination (R2) are shown 

in Table 5. It is apparent that the second implementation, which includes the lagged student grade as an input variable, 

has overwhelming results when compared to the base implementation, which considers only the critical factors. The 

base implementation led us to poor fits to the training data. On the other hand, the second implementation reaches a 

good accuracy level. This is true regardless of which algorithm is considered. The XGB has the best results overall, in 

which the edge is much more pronounced in the base implementation. Boosting is a machine learning method the 

principal objective of which is to reduce bias even if it is more prone to incurring overfitting. The RF comes next, being 

surpassed by SVR only in the 12th-year base implementation. 

The duality between base and second implementations in favour of the latter is well represented in Figure 5. Only 

the XGB shortens the distance between both implementations. However, it is accomplished by overfitting the training 

data and does not revert to its generalization ability. 

Table 5. Training results. 

  Train 

  Implementation 

  11th year 12th year 

  Base Second Base Second 

MSE 

RF 6.051 1.992 5.467 1.515 

SVR 6.124 2.087 5.411 1.523 

XGB 2.609 1.265 2.322 0.817 

MAE 

RF 2.002 1.073 1.900 0.937 

SVR 1.964 1.094 1.817 0.929 

XGB 1.279 0.863 1.196 0.693 

R2 

RF 0.227 0.746 0.294 0.804 

SVR 0.218 0.733 0.301 0.803 

XGB 0.667 0.838 0.700 0.894 
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MSE                                                                                  MAE 

   

R2 

 

Figure 5. Base and second implementation duality in training. 

4-2-4- Prediction Test Phase 

The test results are shown in Table 6. They are poorer than the training results, highlighting the existence of 

overfitting. Figure 6 illustrates the difference between train and test phases. The deterioration is generally more acute in 

the base implementation. Every algorithm exhibits at least some overfitting, but it is intense in the XGB case, especially 

in the base implementation, which is invariably located on the graphs upper right corner. The second implementation 

still presents an appropriate accuracy and seems to yield a good level of robustness. 

                         MSE                                                           MAE                                                           R2 

   

Figure 6. Overfitting and train-test gap. 
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In the base implementation the XGB training edge is significantly shortened and in the second implementation 

virtually disappears. Indeed, the SVR even takes the lead in the 12th-year second implementation. The training four-fold 

cross-validation results converge with the test results, as both the features selection and hyperparameter optimization 

were undertaken on the 10th-year base implementation dataset. The XGB cross-validation standard error is in line with 

RF and SVR, indicating that the strong overperformance of the XGB base implementation in training and its further fall 

in the test evaluation are almost certainly due to noise retention. 

Table 6. Generalization on test dataset.  

  Cross validation Test 

  Implementation Implementation 

  11th year 12th year 11th year 12th year 

  Base Second Base Second Base Second Base Second 

MSE 

RF 6.489 2.104 5.869 1.608 6.440 2.094 5.834 1.553 

SVR 6.617 2.118 5.956 1.575 6.576 2.109 6.000 1.528 

XGB 6.360 2.153 5.817 1.615 6.069 2.087 5.699 1.545 

δMSE 

RF 0.076 0.045 0.054 0.066     

SVR 0.090 0.045 0.006 0.045     

XGB 0.072 0.050 0.056 0.055     

MAE 

RF 2.073 1.104 1.970 0.965 2.068 1.095 1.966 0.949 

SVR 2.074 1.106 1.949 0.952 2.074 1.098 1.966 0.934 

XGB 2.017 1.126 1.919 0.970 1.971 1.105 1.895 0.948 

δMAE 

RF 0.012 0.009 0.015 0.010     

SVR 0.016 0.010 0.007 0.007     

XGB 0.020 0.010 0.016 0.009     

R2 

RF 17.08% 73.12% 24.21% 79.23% 17.15% 73.06% 23.80% 79.71% 

SVR 15.45% 72.93% 23.08% 79.65% 15.40% 72.87% 21.62% 80.04% 

XGB 18.74% 72.49% 24.87% 79.15% 21.92% 73.15% 25.56% 79.82% 

δR2 

RF 0.008 0.006 0.004 0.006     

SVR 0.012 0.006 0.006 0.006     

XGB 0.006 0.007 0.004 0.007     

When predicting student grades, the second implementation is better than the base implementation regardless of 

which algorithm is taken. The duality between the implementations deepens in the test phase as we evaluate the 

generalization ability of the algorithms in unseen data. The XGB test results are not blurred with overfitting issues and 

end by converging to the other algorithms’ performances. In Figure 7 the dual zones of the base and second 

implementations are much clearer. 

4-2-5- Bias and Variance Decomposition 

As the irreducible variance and the target variable stochastic process are not supposed to vary with the 

implementations, the bias and irreducible variance aggregation are further referred to as bias. 

As in the prediction, the second implementation provides a pronounced improvement over the base implementation 

with an MSE maximum decline of 71.10% in the 12th year SVR and a minimum of 63.18% in the 11th year XGB (see 

Table 7). The decrease in the bias explains a major percentage of the MSE improvement, reaching a maximum of 98.61% 

in the RF and a minimum of 82.25% in the XGB, both for the 11th year. Though far from being decisive, the variance 

also decreases, contributing to the MSE improvement (see Figure 8). 
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Figure 7. Base and second implementation duality in test. 

 

Figure 8. Decomposition of the MSE improvement. 
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The best bias results correspond to XGB implementations, which are consistent with the machine learning boosting 

technique’s main purpose. In turn, the RF presents the MSE best results, which were essentially built upon the variance 

performance the inherent RF bootstrap is meant to provide. The SVR improves performance in the second 

implementation and is quite effective in adapting to the lagged teacher grade strong signal. The described duality 

between the base and second implementation generalization ability in the prediction sections corresponds to a bias 

duality in the bias and variance decomposition (see Figure 9). The duality in terms of variance does not appear perfect 

because of the XGB variance comparing poorly with any other algorithm implementation, a classic example of the well-

known bias and variance trade-off [70]. 

                                                MSE                                                                               Bias 

   

   Variance 

 

Figure 9. Base and second implementation duality. 

Table 7. Bias and variance decomposition. 

  Implementation 
11th year 12th year 

RF SVR XGB RF SVR XGB 

MSE 

Base 6.81 7.12 7.05 6.24 6.62 6.66 

Second 2.45 2.46 2.60 1.92 1.91 2.03 

Difference 4.36 4.66 4.46 4.33 4.70 4.63 

Bias 

Base 6.65 6.85 5.93 6.08 6.33 5.61 

Second 2.35 2.40 2.26 1.85 1.84 1.73 

Difference 4.30 4.45 3.66 4.23 4.49 3.88 

Variance 

Base 0.16 0.27 1.13 0.16 0.28 1.05 

Second 0.10 0.06 0.33 0.07 0.07 0.30 

Difference 0.06 0.21 0.79 0.09 0.22 0.75 
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4-2-6- Knowledge Intensity 

Table 8 shows the knowledge incorporated in the different implementations per AA critical factor. (Subjects) refers 

to the classes presented in Table 2 and it is not related to any critical factor. The base implementations of the 11th and 

12th grades have 49 and 52 input variables respectively, contrasting with the 16 and 25 input variables of the second 

implementations (Table 8). Due to the introduction of the lagged teacher grade as a predictive variable, the Lasso method 

of selecting relevant input variables discards a much larger number of predictive variables associated with AA critical 

factors. Through the analysis of the RF feature importance structure, it is concluded that the critical factors that most 

contribute to the final solution in the base implementations are the cognitive ability and the SES. However, the 

importance of the lagged teacher grade of 96.7% for the 11th year and 96.2% for the 12th year overpowers any 

contribution of the critical factors to the final solution in the second implementations. Thus, the base implementations 

are considered knowledge-intensive when compared to the second implementations. 

Table 8. Knowledge. 

Literature AA critical factors 

# variables after Lasso procedure RF feature importance 

Implementation Implementation 

Base Second Base Second 

11th 12th 11th 12th 11th 12th 11th 12th 

(Subjects) 3 3 2 3 0.286 0.436 0.008 0.018 

Cognitive ability 2 2 1 2 0.158 0.136 0.004 0.002 

Gender 1 1 1 1 0.091 0.053 0.002 0.000 

Ethnicity 3 2 0 0 0.001 0.000 0.000 0.000 

Computer usage 0 1 0 1 0.000 0.003 0.000 0.001 

Internet usage 0 0 0 0 0.000 0.000 0.000 0.000 

SES 32 34 8 10 0.356 0.275 0.010 0.013 

School size 1 1 1 0 0.060 0.038 0.008 0.000 

Class size 1 1 0 0 0.025 0.024 0.000 0.000 

Lecturing quality 6 7 3 8 0.024 0.035 0.002 0.003 

(lagged teacher grade)       0.967 0.962 

Total 49 52 16 25 1 1 1 1 

The graphs in Figure 10 were built upon the first component of a Lasso variables and RF feature importance principal 

components analysis. It is strong and positively correlated with both variables and explains 91.3% of total variance. 

Concerning knowledge (Figure 10) there is also a duality between the base and second implementation. However, in 

this case, the base implementation takes the lead and incorporates more knowledge than the second implementation. 

                          Cognition, gender, and ethnics                                           Computer, internet, and SES 
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     School, class size, and lecturing 

 

Figure 10. Base and second implementation knowledge duality. 

5- Discussion 

5-1- Discussion 

In machine learning, bias can refer to any factor, embedded either in the algorithm architecture or in the concept 

representation form, which leads to a decision of preferring one learning generalization to another that is inconsistent 

with the ground knowledge of the experimental examples [71]. The procedural bias or algorithm bias focuses on the 

appropriateness of the search heuristics preferences on paths and approaches that assist the learning process. One 

example is the problem of structural bias that consists of the inability of the evolutionary algorithms to carry out an 

impartial search that includes every part of the search space [72]. A set of well-known state of the art machine learning 

algorithms – RF, SVR, and XGB – was purposefully called on for factoring in the procedural bias. Its influence can be 

regarded negligible, as the algorithms’ performances are quite similar throughout the implementations. 

The representational bias focuses on the adequateness of the search space to define, explain, and predict the target 

concept [73]. The dataset bias problem of the image object detector domain that limits the generalization ability to test 

datasets within the learning source is an example of representational bias [74]. Another example can be found in the size 

of Big Data datasets extracted from the digital platforms, which often leads researchers to generalize the conclusions to 

the entire population when in fact they represent only individuals with a special propensity to use them [75]. The second 

implementation presents an adequate performance in terms of generalization error and bias, despite the AA critical 

factors’ small role in the definition of its input space. Its accuracy is built upon the student’s historical path. The base 

implementation shows poor performance in terms of generalization error and bias due to the lack of precision in the 

critical factors’ measurement. In the current study the poor performance of machine learning algorithms when predicting 

student grades is related to the input space’s poor precision and the lack of a sound student historical path. Indeed, the 

representational bias is set to a minimum when the search space imprints every tone of the target concept. However, it 

is not decisive about whether it is established upon a differed measurement of the same target concept or upon a 

comprehensive knowledge and precise measurement of its determinants. 

The concept of knowledge bias refers to the gap between the target concept knowledge space and the input search 

space. The former can have unknown dimensions and includes every element that affects the target concept. In turn, the 

input search space normally has only a subset of those elements, adding knowledge bias to the learning model. The 

concept of knowledge bias is pivotal to frame the precision education effect on machine learning bias. The base 

implementations have poorer performance and wider machine learning bias relative to the second implementations. 

However, the knowledge bias is weaker in the former as the base search space invariably has more critical factor 

components with greater RF feature importance. Therefore, it is possible to avoid machine learning bias and augment 

the generalization ability of a model without adding knowledge. Precision education would improve the machine 

learning bias through a knowledge bias decrease. More precisely, precision education would mostly improve high bias 

knowledge-intensive machine learning models and the effect in low bias knowledge-extensive models as the second 

implementation would be marginal. By no means is its role diminished. First, it is worth mentioning that the expansion 

of knowledge about the AA critical factors is important in the design of novel conceptualizations in the AA domain [9]. 

Second, low bias intensive-knowledge learning models are crucial to design new policies and actions, as the goal is to 

mould the critical factors in such a way that is conducive to AA attainments. Last, low bias extensive-knowledge learning 
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models are suitable to evaluate the same policies and actions but only in a post-design phase. Indeed, they do not assist 

the education stakeholders in the design of policies, as do low bias intensive-knowledge learning models. On the other 

hand, as long as there is irreducible variance, the grades predicted by any algorithm have an ever-present quantum bias. 

The individual essential foundation resides in the quantum, and student evaluation through real life assessments is a way 

to ensure the freedom of being. 

5-2- Limitations 

This study has several limitations. The cognitive ability is not directly represented by student intelligence quotient 

data and there is no measure pointing to the student attitude toward school activities and the corresponding parental 

involvement. The set of SES variables does not include income data and family size. Furthermore, the comfort of the 

school infrastructure, its adequateness, and the teachers’ lecturing abilities are also omitted. The lack of depth and scope 

in the dataset can explain a non-significant part of the performance differences reported in the results. The adoption of 

a precise and data-driven approach in the management and storage of education data is a pivotal cornerstone in the 

implementation of a precision education framework. 

6- Conclusion  

As for the first research question, we conclude that the poor performance of machine learning algorithms when 

predicting student grades is related to the input space’s poor precision and the lack of a sound student historical path. 

To anticipate student’s grades through a machine learning implementation, we must collect either a comprehensive 

dataset that includes the entire range of the critical factors or the most recent preceding grades. On the other hand, the 

information systems that support the national education cluster should be designed in such a way as to allow every 

important piece of information about the AA critical factors to be collected. This is a most needed background if the 

aim is to implement machine learning models that would be decisive both in educational policy planning and in the 

decision-making process of the educational stakeholders. Regarding the second research question, precision education 

would mostly improve high bias knowledge-intensive machine learning models and the effect in low bias knowledge-

extensive models as the second implementation would be marginal. If the education stakeholders’ objective is to design 

policies and define new actions, a low bias knowledge-intensive model, the search space of which is formed by every 

critical factor, is almost mandatory, as it produces less biased estimates of the effects of the critical factors. The precision 

education framework adoption can provide them. If the aim is to anticipate student’s grades, a knowledge-extensive 

model can be sufficient and appropriate, depending solely on the generalization error it conveys. 

Concerning the third research question, the second implementation has a greater knowledge bias when compared to 

the base implementation even though it has a lower machine learning bias. Therefore, it is possible to reduce the machine 

learning bias without adding knowledge to the learning model. It can be accomplished by simple deferred observation 

of the target concept. 
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Appendix I: Features Description 

Feature Description 

Subjects Portuguese, foreign languages, quantitative and natural sciences, human and social sciences 

Retentions Number of student retentions 

Enrolments Number of student enrolments 

Gender Feminine and masculine gender 

Father nationality Portugal, Africa, Brazil, China, East Europe, developed countries and others 

Computer The student owns a personal computer 

Internet The student has access to the internet 

Job situation The student works 

Education guardian Mother, father, himself, close relative, and guardian 

Guardian job educational level Unknown, basic, secondary, college graduation, and post-graduate 

Father job educational level Unknown, basic, secondary, college graduation, and post-graduate 

Mother job educational level Unknown, basic, secondary, college graduation, and post-graduate 

Guardian job situation Unknown, employee, unemployed, self-employed, employer, home affairs, retired, student, and other 

Father job situation Unknown, employee, unemployed, self-employed, employer, home affairs, retired, student, and other 

Mother job situation Unknown, employee, unemployed, self-employed, employer, home affairs, retired, student, and other 

Guardian educational level 
Unknown, no formal education, basic I, basic II, basic III, secondary, bachelor, university degree, post-

graduate, master, PhD, and other 

Father educational level 
Unknown, no formal education, basic I, basic II, basic III, secondary, bachelor, university degree, post-

graduate, master, PhD, and other 

Mother educational level 
Unknown, no formal education, basic I, basic II, basic III, secondary, bachelor, university degree, post-

graduate, master, PhD, and other 

Scholarship No support, half support, and full support 

Parish Student's home is located in the school parish 

County Student's home is located in the school county 

Family non-classic dwellings Percentage of family non-classic dwellings that exist in the student's home parish 

Collective dwellings Percentage of collective dwellings that exist in the student's home parish 

Illiteracy rate Student home parish illiteracy rate 

Post-secondary schooling rate Student home parish post-secondary schooling rate 

Primary sector importance Student home parish primary sector activities importance 

Secondary sector importance Student home parish secondary sector activities importance 

Unemployment rate Student home parish unemployment rate 

School size Number of school students 

Class size Number of class students 

Teacher professional category 
School definitive permanent staff, school cluster definitive permanent staff, pedagogical zone definitive 
permanent staff, school non-definitive permanent staff, school cluster non-definitive permanent staff, 

pedagogical zone non-definitive permanent staff, and fixed-term staff 

Teacher educational level Bachelor degree, master and PhD, and other 

Teacher career step Non-existent, low, medium, and high 

Teacher gender Feminine and masculine gender 

Temporary replacement The teacher is replacing a temporarily unavailable colleague 

Educative support The teacher delivers further support to the students that are at risk of failing 

Teacher age the age of the teacher 

Lecturing time Teacher time dedicated to lecturing in hours 

Non-lecturing time Teacher time not dedicated to lecturing in hours 

Educative support time Teacher time dedicated to educative support in hours 

Teacher grade End of the year teacher grade (0-20) 

 


