A geographically weighted regression approach to investigate air pollution effect on lung cancer: A case study in Portugal

Diogo Cardoso, Marco Painho, Rita Roquette

1NOVA IMS Information Management School; 2“Doutor Ricardo Jorge” National Institute of Public Health (INSA), Lisbon, Portugal

Abstract

The risk of developing lung cancer might to a certain extent be attributed to tobacco. Nevertheless, the role of air pollution, both form urban and industrial sources, needs to be addressed. Numerous studies have concluded that long-term exposure to air pollution is an important environmental risk factor for lung cancer mortality. Still, there are only a few studies on air pollution and lung cancer in Portugal and none addressing its spatial dimension.

The goal was to determine the influence of air pollution and urbanization rate on lung cancer mortality. A geographically weighted regression (GWR) model was performed to evaluate the relation between particle matter (PM) emissions and lung cancer mortality relative risk (RR) for males and females in Portugal between 2007 and 2011. RR was computed with the BYM model.

For a more in-depth analysis, the urbanization rate and the percentage of industrial area in each municipality were added. GWR efforts led to identifying three variables that were statistically significant in explaining lung cancer relative risk mortality, PM emissions, urbanization rate and the percentage of industrial area with an adjusted R² of 0.63 for men and 0.59 for women. A small set of 8 municipalities with high correlation values was also identified (local R² above 0.70). Stronger relationships were found in the north-western part of mainland Portugal. The local R² tends to be higher when the emissions of PM are joined by urbanization and industrial areas. However, when assessing the industrial areas alone, it was noted that its impact was lower overall. As one of the first communications on this subject in Portugal, we have identified municipalities where possible impacts of air pollution on lung cancer mortality RR are higher thereby highlighting the role of geography and spatial analysis in explaining the associations between a disease and its determinants.

Introduction

The beginning of the Industrial Revolution in the United Kingdom in the 18th century brought about air pollution as a serious problem which has impacted human society ever since. Until then, air pollution was limited to volcanic activities, mining and some domestic tasks involving the use of fuels such as coal (Stem, 2014). The rapid urbanization and industrialization around the world, resulting in substantial increases in emissions of pollutants from burning fossil fuels, is not a problem that exclusively affects the urban populations. In rural areas, local populations are exposed to the use of solid fuels such as vegetal, wood and coal, among others (Arbex et al., 2012). Several studies have shown the link between particulate and gaseous pollutants emitted by different sources, and the symptoms of respiratory diseases and the consequent demand for health services and hospitalizations (Arbex et al., 2012). In 2016, the World Health Organization (WHO) estimated that global air pollution (indoor and outdoor) killed 7 million people worldwide (one in nine deaths), a number that has doubled past estimates, making air pollution a major health risk in the world (WHO, 2016).

One of the main diseases linked to this type of pollution is lung cancer, the type of cancer that kills the most and the fifth leading cause of death in the world: 1.69 million deaths in 2015 (WHO, 2017). At the end of the 19th century and beginning of the
20th century, it was an almost unknown disease. At the time it represented only 1% of all cancers identified in autopsies at the Institute of Pathology at the University of Dresden in Germany in 1878, rising to about 10% in 1918 and more than 14% in 1927 (Witschi, 2001). Over the course of the century, this number increased further and several causes were identified, including increased air pollution due to the higher number of motor vehicles on the roads and exposure to different types of noxious gases during World Wars I and II, while smoking was only shown to be associated decades later (Witschi, 2001). However, studies associating these two factors would only appear in the middle of the 20th century, after three momentous events of air pollution, or smog, as they later became known. Such events in 1938 in the Meuse River Valley, Belgium; in 1948 in Donora, Pennsylvania; and the gravest of all, in 1952 in London, which killed about 12,000 people, arousing the authorities to the true consequences of prolonged exposure to harmful material in the air (Witschi, 2001). Even though some authors claim that given the high percentage of tobacco-related cases it is difficult to carry out studies proving other factors that cause the disease (Zamboni, 2002), numerous studies conducted in various parts of the world have concluded that long-term exposure to air pollution is an important environmental risk factor for lung cancer mortality and other respiratory diseases (Pope III et al., 2002; Katanoda et al., 2011; Rückerl et al., 2011; Hamra et al., 2014). Diverse methods were used in these studies to analyze the effects of air pollution on lung mortality. The choice of methods depended directly on the type of epidemiological study carried out; some of the adopted methods were: Cox proportional hazards model (Pope III et al., 2002; Katanoda et al., 2011); Hierarchical logistic regression models (Hystad et al., 2013) and log-linear regression model (Samet et al., 2000).

The International Agency for Research on Cancer (IARC) estimates for 2010 indicate that of the total deaths in the world from lung cancer, around 223,000 (near 13% of the total), were directly related to air pollution (IARC, 2013). Even though the relative risk of developing cancer as a result of exposure to air pollution is low, the attributed risk (the relative risk multiplied by the number of exposed persons) is high, making air pollution the most significant environmental risk for lung cancer (Fajersztajn et al., 2013). With the available study results, in 2013, IARC classified air pollution as a carcinogen to humans, being included in group 1, a category used when there is strong evidence of carcinogenicity in humans. Exceptionally, an agent may be placed in this category when the evidence of carcinogenicity in humans is less, but there is sufficient evidence of carcinogenicity in experimental animals and strong evidence in exposed humans where the agent acts through a relevant carcinogenic mechanism (IARC, 2013).

Given the current economic and social situation, especially the increase in urban areas and a context where economic growth is encouraged, it is to be expected that more and more people will be exposed to air pollution. Thus, it is essential to determine the contribution of risk factors in the development of the disease, so that preventive measures may be implemented. With access to information, people living in high-risk areas make pressure on public authorities and stakeholders to act in the name of public health and the environment. It is important to note that by the year 2050, exposure to external air pollution is expected to become the leading cause of premature environmental deaths in the world (OECD, 2012), overcoming malaria and deaths associated with poor water quality. While everything points to a decrease in deaths because of these two last causes, pollution should continue to make more vic-

Materials and Methods

Study area

The model was built for mainland Portugal with data from the 2016 Official Administrative Charter of Portugal (CAOP), which includes all of its 278 municipalities, the second-level administrative subdivision of Portugal (Figure 1).

For data analysis purposes, boundaries of the Nomenclature of Territorial Units for Statistics level (NUTS) II was used. Lisbon Metropolitan Area (MA) is simultaneously NUTS II and MA. Oporto MA, in turn, integrates the NUTS II in the North (the Norte region).

Pollution

We focus on the PM$_{10}$ approach given the various studies that have linked it to lung cancer and because it is defined as a carcinogenic agent with sufficient evidence in humans (IARC, 2013). Other agents like nitrogen dioxide, diesel and arsenic are also identified with carcinogenic capabilities (Cogliani et al., 2011), but they were not included in this study due to the lack of data for Portugal. At first, the pollution data used were provided by the European Environment Agency (EEA) on its website (EEA, 2018),
based on the values of the stations around mainland Portugal managed by the APA and some in Spain along the Portuguese border. These values, referring to the concentration of PM$_{10}$ expressed as μg/m3, although reliable, were not homogeneous at the temporal level. Many stations only had values for just a few years, and many of the interior municipalities did not have a nearby station that could serve as a reference, leading to the concentration of data on coastal and urban areas.

We worked with the APA report where the values of PM$_{10}$ emissions per municipality were available for 2009 (APA, 2011). These values are represented in ton per square km (t/km2) and include natural sources (the difference between the inclusion of natural sources and its exclusion is practically nil). The majority of the literature gives values in μg/m3 (Guo et al., 2016; Jerrett et al., 2013), but since the values on the report are from 2009, that is, the middle of our temporal analysis (between 2007 and 2011), and encompass all the municipalities of mainland Portugal, we chose to work with these values in order to guarantee a better consistency of the results and consequently a more accurate analysis. It is essential to make a distinction between the emissions and atmospheric concentrations of PM: emissions refer solely to the emission of particulate matter by sources like industry, traffic or agriculture. The concentrations, most often expressed as μg/m3 in open air, are determined by those emissions and meteorological conditions. There is, however, no linear relation between the emissions and the concentrations of particulate matter (Fierens et al., 2015).

Relative risk
Lung cancer mortality data were made available as RR by municipality, for males and females. In this study, the RR was calculated using the Bayesian model of BYM (Besag et al., 1991), a model often used to estimate spatial risk patterns in the hierarchical mapping of diseases (Gerber, 2013). This method appears as the best option when the disease is specific enough. Some fluctuations that may arise in smaller counts imply that maps based only on raw data may be difficult to interpret and misleading. There are advantages in applying some form of smoothing, which may or may not involve a spatial component and provide point and interval estimates for hazards (Besag et al., 1991).

The BYM model is based on the Poisson regression, where the offset and two types of terms of random effects that take into account both spatial continuity and spatial heterogeneity (López-Abente et al., 2014). It was computed with INLA (Rue et al., 2009), using mortality and population data, obtained from Statistics Portugal (INE). We adopted codes C00 to C97 in data cancer collection, according to the 10th revision of International Statistical Classification of Diseases and Related Health Problems (10th ICD). In terms of period, we considered data aggregated in a five-year period, 2009-2013, given that it is recommended to use large populations, and data grouping in several years (Jensen, 1991). To calculate the reference population, we used 2011 data, the central year of the period and the Census year, multiplied by five (the number of years). Data were disaggregated by sex and eighteen age groups were considered: 0-4; 5-9; 10-14; 15-19; 20-24; 25-29; 30-34; 35-39; 40-44; 45-49; 50-54; 55-59; 60-64; 65-69; 70-74; 75-79; ≥80 years old. In the model construction, we adopted the Besag model, the Laplace option and neighbourhood based on spatial contiguity.

Urbanization rate
For the urbanization rate, we used the Land Use and Land Cover Map (COS) of 2010, made available by the Directorate-General of Territory (DGT) (DGT, 2016). The level one class was used – Artificial Territories – and all its sub-classes, except the sub-class 1.4.1 corresponding to urban green spaces. Then, the percentage of artificial land use was calculated for all the municipalities of the country, using the following formula (Eq. 1):

$$UR = \frac{x}{y} \times 100$$

where UR is the urbanization rate, the artificialized area of each municipality and the total area of each municipality. Afterwards, the urban area was divided into two: urban area per se and industrial area. The urban area includes the following subclasses: continuous urban fabric (1.1.1), discontinuous urban fabric (1.1.2), road and rail networks and associated spaces (1.2.2), port areas (1.2.3) and airports (1.2.4). In the industrial areas the following classes were encompassed: industry (1.2.1.01), energy production infrastructures (1.2.1.05), opencast mines (1.1.0.01), quarries (1.1.0.02), landfill sites (1.3.0.01) and dumps and scrap yards (1.3.0.02). The aim was to separate the continuous and discontinuous urban fabric and the transport networks from the industrial areas and the production and extraction of aggregates sites, potentially more polluting.

Methods of exploratory data analysis
Exploratory data analysis methods were applied to consider spatial autocorrelation within spatial data. The first approach involved the computation of Ordinary Least Squares (OLS) and Global Moran’s I, which is widely used in Geographic Information Systems (GIS), having a rather large usefulness in the geographical analysis of variables in health and epidemiology (Getis et al., 1992; Bui et al.,...
2017). It serves as a complement to a cluster analysis, since the existence of a geographical pattern may indicate that another geographical phenomenon may explain the events under study. The OLS, a linear regression model, shows the deviation of the actual results from the expected results. However, it presents some limitations, especially with regard to the spatial question, since it uses a single equation for all geographic areas (Gutierrez et al., 2012). To explore the local spatial heterogeneity of the potential relationships between PM and lung cancer, the Geographically Weighted Regression (GWR) model appears as the best option. Unlike the OLS, the GWR defines a different equation for each of the geographical areas as it takes the local geographic variation into account (Gutierrez et al., 2012), since a relation (or pattern) that is applied to one area does not necessarily apply to the rest (Comber et al., 2011). However, OLS can be a good tool to indicate a potential problem with global or local multicollinearity; if the Variance Inflation Factor (VIF) value for each explanatory variable is large (above 7.5), global multicollinearity is preventing GWR from a good performance (Mitchel, 2005). Using GWR, each data point is a regression point that is weighted by the distance of the point itself. A spatial kernel map fits the data, and a kernel bandwidth indicates the distance beyond which neighboring regions no longer have an influence on local estimates (Sassi, 2010). The GWR is then an improvement of the classical regression models (Foody, 2003). GWR extends the global regression technique by allowing local parameters to be estimated, instead of global, therefore making it possible to model regional variations within the data (Fotheringham et al., 2003) (Eq. 2):

\[y_i = \beta_0 (u_i, v_i) + \sum_{i=1}^{m} \beta_i (u_i, v_i) x_i + e_i \]

Eq. 2

where \((u_i, v_i)\) are the coordinates for every \(i\) point in space, allowing a continuous surface of parameter values. An important aspect of GWR is that spatial autocorrelation is present within the sampled data. As a result, it is assumed that data near point \(i\) will have more influence regarding the estimation of the continuous function at point \(i\) than data further away from \(i\). This method has a high importance because it addresses one of the fundamental principles of geographical analysis: to evaluate the possibility of spatial variability in the statistical models (Comber et al., 2011). The choice of bandwidth tends to be very demanding, since \(n\) regressions can be used at each step (Charlton et al., 2009). In the development of this model, an adaptive kernel type was used instead of a fixed type. With the adaptive type, the bandwidth distance will change according to the spatial density of each feature in its input. The bandwidth thus becomes a function of the number of the closest neighbours, each local estimate being based on the same number of features. Instead of a specific distance, the number of neighbours used for the analysis is taken into account (Charlton et al., 2009). For the analysis of the GWR models, we used the adjusted \(R^2\) results. \(R^2\) assumes that every variable explains the variation in the dependent variable, also indicating the proportion of variation explained only by the independent variables that actually affect the dependent variable. The adjusted \(R^2\) value is always lower than \(R^2\), as it reflects the complexity of the model (the number of parameters) relative to the data. As so, the adjusted value of \(R^2\) is a more accurate and reliable measure of model performance (Bui et al., 2017). As for the individual analysis of each municipality, the chosen method of analysis fell on the local \(R^2\). The local \(R^2\) in the GWR model indicates how well the local regression model fits the observed values of \(y\). Very low values indicate that the local model performs poorly and may need more variables to better explain the causes. On the other hand, higher values indicate a causal relationship. Mapping the local \(R^2\) values to see where the GWR predicts well and where it predicts poorly can provide clues about important variables that may be lacking in the developed model. All results were determined by the Geographically Weighted Regression modelling tool within the ESRI’s ArcGIS Software.

Results

PM\(_{10}\) urbanization rate and relative risk of lung cancer mortality maps

Figure 2A shows the map with the emission values of PM\(_{10}\) t/km\(^2\) in mainland Portugal. There is a clear distinction between coastal areas and the interior, particularly in the two main urban centers and more densely populated areas of the country. This map almost coincides with the map with the urbanization rate (Figure 2B), where the regions with the highest percentage of urbanized area correspond to the two metropolitan areas. Regarding lung cancer mortality RR (Figure 3), there are several differences between males and females. Although both exhibit high values in the two metropolitan areas, they differ in some parts of the country: the values for women are smaller in the interior, except in some municipalities in the Centro region, while in men these values are higher in particular in the southern regions (Alentejo and Algarve). A comparison with the data on the percentage of smokers in Portugal is only available at the NUTS II level (Figure 4). The regions with the highest percentage of male smokers match with those where the mortality RR values are higher in the southern regions; in women, this percentage is higher in Lisbon MA, where mortality RR values are also higher and in the South. It should be noted that given the considerable size of the administrative regions at which variables are available, a more precise spatial analysis is difficult, so they should only be seen as a complement to the analysis. For instance, in the Norte region, there is a considerable difference in mortality RR between the coastal area and the interior of the region, but it is not possible to make a detailed analysis regarding the percentage of smokers.

Ordinary least squares model results

In our study, we modelled the relation of the RR of lung cancer mortality with PM\(_{10}\) emissions, the urbanization rate and the percentage of industrial area. VIF results for each variable were: 1.323011 for the PM\(_{10}\) emissions, 1.655088 for the urbanization rate and 1.072336 for the industrial area, which indicates that the model would not be affected by multicollinearity. Akaike Information Criterion Corrected (AICc) values, presented in Table 1, show that

| Table 1. Ordinary least squares Akaike Information Criterion Corrected values. |
|---------------------|---------------------|---------------------|---------------------|
| | RR & PM\(_{10}\) | RR, PM\(_{10}\), & TU | RR, PM\(_{10}\) & PAI |
| Women | -352 | -17 | -246 |
| Men | -253 | -59 | -329 |

RR: relative risk; PM: particle matter; TU: urbanization rate; PAI: percentage of industrial area.
Figure 2. (A) Particle matter\textsubscript{10} emissions (\text{t/km}^2); (B) Urbanization rate. MA, metropolitan area.

Figure 3. Lung cancer mortality relative risk for women (A) and men (B) between 2007-2011. MA, metropolitan area.
the best model for women considers only PM_{10}, while for men it considers PM_{10} and percentage of industrial area.

Relative risk with PM_{10} emissions

The local coefficients of PM_{10} and RR were positive in all municipalities (Appendix Figure A1). For men, higher values were found to be located in South and northwest. For women, the cluster in South was smaller than that for men, while the cluster in Northwest was higher.

This model had an overall adjusted R^2 result of 0.62 for men and 0.58 for women, that is, tends to be successfully predicting about 64% of the mortality RR variability in men and 59% in women. However, when the map of local R^2 (Figure 5) was overlaid with the RR map (Figure 2B), we found some differences; looking at the values for men there was an area to the Southeast with high RR values that did not have the correspondence with PM_{10} values. On the other hand, there seemed to exist a relation in the Northwest area, where both maps had higher values. For women, the highest values were scattered, but as for men, they were more concentrated to the Northwest, so as the RR values.

Relative risk with PM_{10} emissions and urbanization rate

In this model, the local coefficients of PM_{10} and RR were positive in all municipalities (Appendix Figure A2). As in the previous model, clusters of higher values were located in the South and Northwest and were more extensive for men than women. It should be noted that the municipalities of the Lisbon MA was not classified in the higher class of values, contrary to what happened with the previous model.

Figure 6 shows that the model tends to successfully predict about 65% of the relative risk variability for men and 58% for women, *i.e.* a similar result as the situation before: an adjusted R^2 of 0.65 and 0.59, respectively. Concerning men, the map revealed higher values in both MAs and their surroundings, but the southeastern hotspot remained without a relationship with the variables under analysis. The values for women were again higher in the northern coastal region, with a cluster in the northern central region. Values around Lisbon MA were lower than with the previous model.
ous model. With these two variables, 18% of the municipalities had values above 0.50 for men and 15% for women.

Relative risk with PM$_{10}$ emissions, urbanization rate and percentage of industrial area

The industrial area was separated from urban area (Figure 7 and Appendix Figure A3), which now only includes continuous and discontinuous urban area, and the transport infrastructures. Adjusted R2 values were 0.59 for women and 0.63 for men. Regarding men, higher values were found in both MAs, but for women they were between 0.30 and 0.50 in Lisbon MA. Using these variables, 20% of municipalities had values above 0.50 both for men and women. Also, 3% of the municipalities had values above 0.70 for men.

Relative risk with PM$_{10}$ emissions and percentage of industrial area

With the objective of measuring the possible impact of industry, quarries and aggregate extraction sites on mortality RR values (in particular the hotspot in the south-eastern region in men’s RR) the urban area was separated from the industrial area (Figure 8 and Appendix Figure A4). With this model, we were faced with a low percentage of the municipalities with a local R2 above 0.50; only 8% of municipalities for men and 13% for women, and an adjusted R2 of 0.48 and 0.46 respectively, the lowest result taking into account all the variables.

Model comparison

We compared the models in terms of standard errors and AICc criterion. Standard errors (Appendix Figures A5-A8) measure the reliability of each coefficient estimate. Confidence is higher when standard errors are small in relation to the actual coefficient values. Moran’s I values ranged between 0.2107 (the lowest) and 0.6591 (the highest), and while values over 0.5 point to a trend towards clusters, it is possible to say that in general, the model does not tend to clustering (Perrino, 2010; Zhang et al., 2017).

Table 2 presents AICc values for each model. The lowest val-

![Figure 6](image_url)

Figure 6. Geographically weighted regression model with particle matter$_{10}$ emissions and urbanization rate values for women (A) and men (B). MA, metropolitan area.

<table>
<thead>
<tr>
<th></th>
<th>RR & PM$_{10}$</th>
<th>RR, PM$_{10}$ & TU</th>
<th>RR, PM$_{10}$ & PAI</th>
<th>RR, PM$_{10}$, TU & PAI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women</td>
<td>-596</td>
<td>-633</td>
<td>-510</td>
<td>-623</td>
</tr>
<tr>
<td>Men</td>
<td>-465</td>
<td>-468</td>
<td>-457</td>
<td>-467</td>
</tr>
</tbody>
</table>

RR, relative risk; PM, particle matter; TU, urbanization rate; PAI, percentage of industrial area.
Discussion

The results of this study are in line with the hypotheses initially set. The highest values of correlation are mainly concentrated around the two metropolitan areas of the country, which are the regions with higher PM\text{10} emissions, urbanization rate and percentage of industrial area. Nonetheless, those values are higher in the North-western part of mainland Portugal. It was expected that some of the values of lung cancer mortality RR (Figure 3) were not related to those obtained in the GWR models mainly in the southern regions, since smoking is a significant risk factor of lung cancer (about 90% of cases in men and 55% to 80% of cases in women are attributed to cigarette smoking; Levi, 1999). Moreover, even though air pollution is also identified as an important cause of the disease, its impact is expected to be lower. The GWR results between the percentage of industrial area and lung cancer mortality RR represent a lower correlation than the other two variables. A more detailed analysis is necessary in this matter, but this may mean that the impact of the industries is smaller in the emission of PM\text{10} with the origin from motor vehicles being higher. As mentioned in the introduction, the use of individual transport is one of the main aggravating factors for the high levels of air pollution in both metropolitan areas (Cristina \textit{et al.}, 2016). The use of urbanization rate is not new in the study of lung cancer mortality, but they tend to have a focus on rural-urban differences and socioeconomic aspects (Riaz \textit{et al.}, 2011; Singh \textit{et al.}, 2012), a different approach from that carried out in this study.

A geographic approach with remote sensing can help to fill in data gaps that hamper current efforts to study air pollution. A study by Hu and Baker (2017) shows that there is a significant positive association between mortality from this type of cancer and PM\text{2.5}. This result was achieved using data from the MODIS satellite sensor and MISR Annual Global Grid PM\text{2.5} data (Hu and Baker, 2017). Nonetheless, the statistically significant association between lung cancer mortality and presence of PM\text{2.5} may be indicative of a potential effect of air pollution; the authors suggest that the same association would require a toxicological approach in order to observe the adverse biological mechanism of PM\text{2.5} pollution (Hu and Baker, 2017). The model developed in this study yielded satisfactory results and is in line with other similar studies using GWR models (Fu \textit{et al.}, 2015; Ren \textit{et al.}, 2016), or other spatial analyst tools (Bilancia \textit{et al.}, 2009; López-Cima \textit{et al.}, 2011). Even though the study of cancer’s spatial epidemiology has had a greater emphasis in the last decade (Roquette \textit{et al.}, 2017), there are only a few studies on the relationship between lung cancer and air pollution in Portugal (Slezakova \textit{et al.}, 2011). This study repre-

![Figure 7. Geographically weighted regression model with particle matter\text{10}, urbanization rate and percentage of industrial area values for women (A) and men (B).](image-url)
sents one of the first to use RR mortality data along with spatial regression analysis tools to explore a possible relationship between both factors in mainland Portugal.

One of the advantages of using GWR is that it accounts for spatial autocorrelation in the residuals that are usually found in global modelling. Further, it is possible that a variable that is insignificant at the global level might be important locally (Fotheringham et al., 2008). When relationships are consistent across a study area, an OLS model fits neatly into these relationships; it creates equations that best describe general relationships of data in each area. However, it is not always like that, so often these relationships have different behaviours throughout space. When the exploratory variables exhibit non-stationary relationships (regional variation), the model tends to fail, unless robust models adapted to this problem are applied. The GWR model addresses this issue precisely (Mitchel, 2005).

Identifying causes and effectively addressing them can lead to significant savings in health spending. With the implementation of rigorous legislation on gaseous emissions, health expenditure directly linked to air pollution in Europe has been decreasing. It is estimated that from € 803 billion spent in 2000, it will decrease to € 537 billion in 2020 (Brandt et al., 2013). The convergence of the many studies carried out so far has led to a reconsideration and updating of health standards and guidelines, leading to new long-term research programs in order to analyze the effects of particulate pollution on health (Brandt et al., 2013). However, it is known that these changes always have economic and social impacts, sometimes facing great opposition in certain sectors of society.

Our results sustain the hypothesis that air pollution might be a risk factor for lung cancer. Indeed, it indicates a higher lung cancer mortality RR among municipalities where both urban and industrial areas are also superior. It demonstrated the benefits of GWR, both in respect to model performance and by allowing spatial analysis of the data. Lung Cancer mortality RR was found to be heterogeneous related to human factors at the municipality level in mainland Portugal. Our findings may assist local authorities when assessing risks, and by helping public health entities allocate resources and address the issue according to the specific conditions of each region.

Conclusions

With this research, our objective was not to find the municipalities where people are most likely to die from lung cancer, but rather to assess the impact of the PM$_{10}$ emissions in each municipality and to understand the influence of the urbanization rate and the percentage of industrial area in these values. Furthermore, including two variables that address the land use may be a new method of approaching this subject and generate a more realistic model. As a result, this study contributes to the knowledge of the effects of air pollution on lung cancer and on the use of local spa-
tional analyses in epidemiological studies. Such information can be used in urban planning to reduce air pollution.

No evident homogeneous pattern distribution association was found between PM$_{10}$ emissions and lung cancer mortality RR in municipalities across mainland Portugal. There is. The relation between PM$_{10}$, urban area and industrial areas and lung cancer mortality rates varies spatially, and there are other agents that may influence the lung cancer mortality rate in different areas of mainland Portugal, but we can say that it has a focus on the two metropolitan areas. Several municipalities tend to show values of R2 always above 0.50 in all models which represents a positive relation. It is pertinent to state that the emission of PM$_{10}$ as the urbanization rate and percentage of industrial area affect the lung cancer mortality RR values in those municipalities. The relation of lung cancer turned out to be higher when the emissions of PM$_{10}$ were joined by the urbanization rate and the percentage of industrial area (R2 value of 0.63 for men and 0.59 for women). However, when assessing the industrial areas alone, it was noted that their impact is lower in the overall results (R2 equal to 0.48 for men and 0.46 for women).

Spatial variation in the relations between lung cancer RR and air pollution means that in some places PM$_{10}$ and urbanization rate have a greater effect on mortality than in other places. In the municipalities where the values are high, local authorities should step in to minimize the effects of air pollution and carry out better planning in order to benefit the public health of the local populations. We note that the problem is complex, and that further investigation is needed for a full understanding of this issue.

References

