Rosário Fernandes*

The maximum multiplicity and the two largest multiplicities of eigenvalues in a Hermitian matrix whose graph is a tree

Abstract: The maximum multiplicity of an eigenvalue in a matrix whose graph is a tree, M_1, was understood fully (from a combinatorial perspective) by C.R. Johnson, A. Leal-Duarte (Linear Algebra and Multilinear Algebra 46 (1999) 139-144). Among the possible multiplicity lists for the eigenvalues of Hermitian matrices whose graph is a tree, we focus upon M_2, the maximum value of the sum of the two largest multiplicities when the largest multiplicity is M_1. Upper and lower bounds are given for M_2. Using a combinatorial algorithm, cases of equality are computed for M_2.

Keywords: Eigenvalue multiplicities; Symmetric matrices; Trees; Two largest multiplicities

MSC: 15A18, 05C38, 05C50

DOI 10.1515/spma-2015-0001
Received September 10, 2013; accepted December 4, 2014

1 Introduction

Let T be a tree on $n \geq 2$ vertices. We denote by $S(T)$ the collection of all n-by-n complex Hermitian matrices whose graph is T. No restriction is placed upon the diagonal entries of matrices in $S(T)$.

For convenience, when $A \in S(T)$, we place in non-increasing order the multiplicities of the eigenvalues of A. We refer to such a list of multiplicities as the unordered multiplicity list and we denote it by $(m_1(A), m_2(A), \ldots, m_k(A))$, where $k(A)$ is the number of distinct eigenvalues of A. So, $m_j(A)$ is the jth largest multiplicity of an eigenvalue in the multiplicity list of A.

Definition 1.1. Let $L(T)$ be the set of all positive integer lists (unordered multiplicity lists) (p_1, p_2, \ldots, p_s) satisfying:

1. $p_1 \geq p_2 \geq \ldots \geq p_s \geq 1$;
2. $\sum_{i=1}^s p_i = n$;
3. There is an $A \in S(T)$ with $(m_1(A), m_2(A), \ldots, m_{k(A)}(A)) = (p_1, p_2, \ldots, p_s)$.

For $j \geq 1$, we denote by

$$M_j(T) = \max_{(p_1, p_2, \ldots, p_s) \in L(T)} (p_1 + \ldots + p_j).$$

It is well known that $M_1(T)$ is equal to the path cover number $P(T)$, the smallest number of nonintersecting induced paths of T that cover all the vertices of T; this is the same as $\max(p - q)$, where p is the number of paths remaining when q vertices have been removed from T in such a way as to leave only induced paths [3].

Remark 1.2. In [7] a combinatorial algorithm was given to compute $M_2(T)$. It is easy to see that if $(p_1, p_2, \ldots, p_s) \in L(T)$ then

*Corresponding Author: Rosário Fernandes: Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, E-mail: mrff@fct.unl.pt
(1) \(p_1 \leq M_1(T) \).
(2) \(p_1 + p_2 \leq M_2(T) \).
(3) \(p_1 + p_2 \geq 2, p_2 \neq 0 \) (because if \(T \) is a tree and \(A \in S(T) \) then the largest and the smallest eigenvalues of \(A \) have multiplicities one. So, each list in \(\mathcal{L}(T) \) has at least two \(1 \)'s, [4]).
(4) Using the definition of \(M_1(T) \), there exists \((p_1, p_2, \ldots, p_s) \in \mathcal{L}(T) \) such that \(p_1 = M_1(T) \).

Given \(M_1(T) \) and \(M_2(T) \), we cannot say there exists a list \((p_1, p_2, \ldots, p_s) \in \mathcal{L}(T) \) such that \(p_1 = M_1(T) \) and \(p_2 = M_2(T) - M_1(T) \). For example, [7], the double star \(D_{3,3} \) has \(M_1(D_{3,3}) = 4 \), \(M_2(D_{3,3}) = 6 \) but \((4, 2, 1, 1) \notin \mathcal{L}(D_{3,3}) \) (we can prove this using the Parter-Wiener theorem [5]). \(M_1(D_{3,3}) = 4 \) because \((4, 1, 1, 1, 1) \in \mathcal{L}(D_{3,3}) \), for example, consider the matrix

\[
\begin{bmatrix}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{bmatrix}.
\]

\(M_2(D_{3,3}) = 6 \) because \((3, 3, 1, 1) \in \mathcal{L}(D_{3,3}) \), for example, consider the matrix

\[
\begin{bmatrix}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & -2 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 3 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1
\end{bmatrix}.
\]

So, it is important to know when given \(M_2(T) \), we can say that there is a list \((p_1, p_2, \ldots, p_s) \in \mathcal{L}(T) \) such that \(p_1 = M_1(T) \) and \(p_2 = M_2(T) - M_1(T) \).

Let \(\overline{M}_2(T) \) (or simply \(\overline{M}_2 \)) denote the maximum value of the sum of the two largest integers among the lists \((p_1, p_2, \ldots, p_s) \in \mathcal{L}(T) \), when \(p_1 = M_1(T) \), i.e.,

\[
\overline{M}_2(T) = \max_{(M_1(T), p_2, \ldots, p_s) \in \mathcal{L}(T)} (M_1(T) + p_2).
\]

Using the definition of \(M_2(T) \), we have \(\overline{M}_2(T) \leq M_2(T) \). In this paper we give upper and lower bounds for \(\overline{M}_2 \) and in some cases, a method for calculating \(\overline{M}_2 \).

2 Assignments

Let \(T \) be a tree on \(n \geq 2 \) vertices. If \(A \in S(T) \) and \(v \) is a vertex of \(T \) then \(A(v) \) denotes the principal submatrix of \(A \) resulting from deleting row and column associated with \(v \), and \(m_A(\lambda) \) denotes the multiplicity of eigenvalue \(\lambda \) of matrix \(A \). The Parter theorem, [8], indicates that if \(A \in S(T) \) and \(m_A(\lambda) \geq 2 \), then there is at least one vertex \(v \) of \(T \), of degree at least 3, such that \(m_{A(v)}(\lambda) = m_A(\lambda) + 1 \). Moreover, \(v \) may be chosen so that \(\lambda \) is an eigenvalue of at least three principal submatrices of \(A \) associated with branches of \(T \) at \(v \). So, we refer to any vertex \(v \) of degree greater or equal to 3 as a high-degree vertex, or HDV. The Parter theorem was refined by Wiener [9] and more fully in [5]. A vertex \(v \) of \(T \) is a Parter vertex for \(A \in S(T) \) and \(\lambda \) when \(m_A(\lambda) \geq 1 \) and \(m_{A(v)}(\lambda) = m_A(\lambda) + 1 \). The Parter theorem guarantees the existence of at least one Parter HDV
for any multiple eigenvalue. If a principal submatrix of A associated with some branch at v again has λ as a multiple eigenvalue, then this theorem may again be applied to that branch. Parter vertices for λ may be removed in this fashion until (fully) fragmenting T into many subtrees when λ occurs as an eigenvalue in such a submatrix associated with the subtree at most once. Such a set of Parter vertices is called a fully fragmented Parter set for λ, and it is known that each successive Parter vertex is also a Parter vertex for A and λ in the original tree.

If X is a set or collection (or graph), then $|X|$ denotes the cardinality of (number of vertices in) X. If V is a set of vertices and X is a graph then $V \cap X$ denotes the set of vertices in both V and X. If X is a tree then $\mathcal{P}(X)$ denotes the collection of all subtrees of X, including X.

Definition 2.1. [7] (Assignment) Let T be a tree on $n \geq 2$ vertices and let
\[
(p_1, p_2, \ldots, p_k, 1^{n-\sum_{i=1}^k p_i})
\]
be a non-increasing list of positive integers, with $\sum_{i=1}^k p_i \leq n$. The notation 1^l denotes that the last l entries of the list are 1. Note that some of the p_i's may be 1. An assignment A of $(p_1, p_2, \ldots, p_k, 1^{n-\sum_{i=1}^k p_i})$ to T is a collection $A = ((A_1, V_1), \ldots, (A_k, V_k))$ of k collections A_i of subtrees of T and k collections V_i of vertices of T, with the following properties.

1. (Specification of Parter vertices) For each integer i between 1 and k,
 1a. Each subtree in A_i is a connected component of $T - V_i$.
 1b. $|A_i| = p_i + |V_i|$.
 1c. For each vertex $v \in V_i$, there exists a vertex x adjacent to v such that x is in one of the subtrees in A_i.

2. (No overloading) We require that no subtree S of T is assigned more than $|S|$ integers; define
 \[
c_i(S) = |A_i \cap \mathcal{P}(S)| - |V_i \cap S|,
 \]
 the difference between the number of subtrees contained in S and the number of Parter vertices in S for the ith integer. So, we require that
 \[
 \sum_{i=1}^k \max(0, c_i(S)) \leq |S|, \text{ for each } S \in \mathcal{P}(T).
 \]
 If this condition is violated at any subtree, then that subtree is said to be overloaded.

Definition 2.2. [7] A collection $A = ((A_1, V_1), \ldots, (A_k, V_k))$ of k collections A_i of subtrees of T and k collections V_i of vertices of T is:

1. an assignment candidate of $(p_1, p_2, \ldots, p_k, 1^{n-\sum_{i=1}^k p_i})$ to T when A satisfies condition 1, but not necessarily 2 of Definition 2.1.
2. a near-assignment of $(p_1, p_2, \ldots, p_k, 1^{n-\sum_{i=1}^k p_i})$ to T when A satisfies conditions 1a, 1b, 2, but not necessarily 1c of Definition 2.1.
3. a near-assignment candidate of $(p_1, p_2, \ldots, p_k, 1^{n-\sum_{i=1}^k p_i})$ to T when A satisfies conditions 1a, 1b, but not necessarily 1c or 2 of Definition 2.1.

In [7] a simplification of assignments of the list $(p_1, p_2, 1^l)$ is considered.

Lemma 2.3. (Overloading Lemma) If T is a tree and A is an assignment candidate (or a near-assignment candidate) of the list $(p_1, p_2, 1^l)$ to T, but A is not an assignment (or a near-assignment, respectively), then there must exist a single vertex in T that is overloaded by A.

Example 2.4. Let T be the following tree
and let \((3, 2, 1^3)\) be a list.
If we consider \(\mathcal{A} = ((A_1, V_1), (A_2, V_2))\) where
\[
A_1 = T - \{4, 5\}, \quad A_2 = T - \{5\}, \quad V_1 = \{4, 5\} \quad \text{and} \quad V_2 = \{5\},
\]
then \(A_1\) has 5 connected components and \(A_2\) has 3 connected components. So, \(|A_1| = 5\) and \(|A_2| = 3\).
\(A\) is an assignment candidate of \((3, 2, 1^3)\) to \(T\) but not an assignment because the subtree \(\{6\}\) of \(T\) satisfies
\[
\max(0, c_1(\{6\})) + \max(0, c_2(\{6\})) = 1 + 1 = 2 > 1 = |\{6\}|.
\]
If we consider \(A' = ((A'_1, V'_1), (A'_2, V'_2))\), where
\[
A'_1 = T - \{4\}, \quad A'_2 = T - \{5\}, \quad V'_1 = \{4\} \quad \text{and} \quad V'_2 = \{5\},
\]
then \(A'_1\) has 4 connected components and \(A'_2\) has 3 connected components. So, \(|A'_1| = 4\) and \(|A'_2| = 3\).
\(A'\) satisfies condition 1 of Definition 2.1.
If \(S = \{1\} \quad \text{or} \quad S = \{2\} \quad \text{or} \quad S = \{3\}, \) then
\[
\max(0, c_1(S)) + \max(0, c_2(S)) = 1 + 0 = |S|.
\]
If \(S = \{4\} \quad \text{or} \quad S = \{5\} \quad \text{or} \quad S = \{7\} \quad \text{or} \quad S = \{8\}, \) then
\[
\max(0, c_1(S)) + \max(0, c_2(S)) = 0 + 0 < |S| = 1.
\]
If \(S = \{6\}\) then
\[
\max(0, c_1(S)) + \max(0, c_2(S)) = 0 + 1 = |S|.
\]
Using Lemma 2.3, \(A'\) is an assignment of \((3, 2, 1^3)\) to \(T\).

Example 2.5. Let \(T\) be the following tree

and let \((2, 2, 1^4)\) be a list.
If we consider \(\mathcal{A} = ((A_1, V_1), (A_2, V_2))\), where
\[
A_1 = T - \{5, 6, 7, 8\}, \quad A_2 = T - \{6\}, \quad V_1 = \{5, 6\} \quad \text{and} \quad V_2 = \{6\},
\]
then \(A_1\) has 4 connected components and \(A_2\) has 3 connected components. So, \(|A_1| = 4\) and \(|A_2| = 3\).
\(A\) is a near-assignment of \((2, 2, 1^4)\) to \(T\) (to prove condition 2 of Definition 2.1 use Lemma 2.3) but not an assignment because \(6 \in V_1\) and there is not a vertex of \(T\) adjacent to 6 in a subtree of \(A_1\).
Using the Overloading Lemma (Lemma 2.3), another important result appears.

Lemma 2.6. Let T be a tree. Then
there exists a near-assignment of the list $(p_1, p_2, 1^1)$ to T if and only if there exists an assignment of the list $(p_1, p_2, 1^1)$ to T.

Proof Suppose there exists a near-assignment $A = ((A_1, V_1), (A_2, V_2))$ of the list $(p_1, p_2, 1^1)$ to T. If A satisfies 1c of Definition 2.1, then A is an assignment of $(p_1, p_2, 1^1)$ to T.

Suppose that A does not satisfy 1c. Then V_1 or V_2 does not satisfy 1c. Suppose, without loss of generalization, that V_1 does not satisfy 1c. So, there exists a vertex $v_1 \in V_1$ such that there is not a vertex x adjacent to v_1 in a subtree of A_1.

Since $|A_1| = p_1 + |V_1|$, remove v_1 from V_1 and remove a subtree R_1 from A_1. We obtain $A_1' = A_1 \setminus R_1$ and $V_1' = V_1 \setminus \{v_1\}$. Since $|A_1'| = p_1 + |V_1'|$, we conclude that $A' = ((A_1', V_1'), (A_2, V_2))$ is a near-assignment candidate of the list $(p_1, p_2, 1^1)$ to T.

If A' is not a near-assignment, by Lemma 2.3, there must exist a single vertex y in T that is overloaded by A'. Using the fact that A is a near-assignment, $y = v_1$. But v_1 does not belong to A_1. Consequently, $S = \{v_1\}$ satisfies condition 2 of Definition 2.1. Contradiction. Therefore, A' is a near-assignment.

If A' satisfies 1c of Definition 2.1, then A' is an assignment of $(p_1, p_2, 1^1)$ to T. If A' does not satisfy 1c of Definition 2.1, repeat the process.

Repeating this process we obtain an assignment because $p_1, p_2 \geq 1$ and in each process we have a collection of subtrees of T satisfying condition 1a of Definition 2.1.

Conversely, the proof is trivial. \qed

Definition 2.7. If $A \in \mathcal{S}(T)$ and S is a subgraph of T then

1. $A[S]$ denotes the principal submatrix of A lying on rows and columns associated with the vertices of S.
2. $A(S)$ denotes the principal submatrix of A resulting from deleting rows and columns associated with the vertices of S.

Using the interlacing theorem for Hermitian matrices [2], if x is a vertex of T (tree) and λ is an eigenvalue of $A \in \mathcal{S}(T)$, then there is a simple relation between $m_{A[l]}(\lambda)$ and $m_{A}(\lambda)$:

$$m_{A[l]}(\lambda) = m_{A}(\lambda) - 1 \quad \text{or} \quad m_{A[l]}(\lambda) = m_{A}(\lambda) \quad \text{or} \quad m_{A[l]}(\lambda) = m_{A}(\lambda) + 1.$$

Definition 2.8. [7] Let T be a tree on $n \geq 2$ vertices. We call an assignment $A = ((A_1, V_1), \ldots, (A_k, V_k))$ of $(p_1, p_2, \ldots, p_k, 1^{n-\sum_i p_i})$ to T realizable if there exists a matrix $B \in \mathcal{S}(T)$ with unordered multiplicity list $(p_1, p_2, \ldots, p_k, 1^{n-\sum_i p_i})$, such that, for each i between 1 and k, if s_i is the eigenvalue of B associated with p_i, i.e, $m_{B}(s_i) = p_i$, then:

1. For each subtree R of T in A_i, $m_{B[R]}(s_i) = 1$.
2. For each connected component Q of $T - V_i$ that is not in A_i, $m_{B[Q]}(s_i) = 0$.
3. For each $x \in V_i$, x is a Parter vertex for B and s_i.

Remark 2.9. Note that if $C \in \mathcal{S}(T)$ is a matrix that satisfies conditions 1 and 2 of Definition 2.8, then for each i between 1 and k, $m_{C}(s_i) = p_i \geq 1$.

Using the interlacing theorem for Hermitian matrices, if $x \in V_i$, then $m_{C[l]}(s_i)$ is equal to

$$m_{C}(s_i) - 1 \quad \text{or} \quad m_{C}(s_i) \quad \text{or} \quad m_{C}(s_i) + 1.$$

By conditions 1 and 2 of Definition 2.8, $m_{C[V_i]}(s_i) = |A_i|$. But A is an assignment, so, $|A_i| = p_1 + |V_i|$. Thus,

$$m_{C[l]}(s_i) = m_{C}(s_i) + 1.$$

Therefore, C satisfies Definition 2.8. \qed
Using the last remark, we can rewrite Definition 2.8.

Definition 2.8 Let T be a tree on $n \geq 2$ vertices. We call an assignment $\mathcal{A} = ((A_1, V_1), \ldots, (A_k, V_k))$ of $(p_1, p_2, \ldots, p_k, 1^{n-\sum_{i=1}^{k} p_i})$ to T realizable if there exists a matrix $B \in \mathcal{S}(T)$ with unordered multiplicity list $(p_1, p_2, \ldots, p_k, 1^{n-\sum_{i=1}^{k} p_i})$, such that, for each i between 1 and k, if s_i is the eigenvalue of B associated with p_i, i.e., $m_B(s_i) = p_i$, then:

1. For each subtree R of T in \mathcal{A}_i, $m_{B[R]}(s_i) = 1$.
2. For each connected component Q of $T - V_1$ that is not in \mathcal{A}_i, $m_{B[Q]}(s_i) = 0$.

Definition 2.10. If T is a tree on $n \geq 2$ vertices, \mathcal{A} is a realizable assignment of $(p_1, p_2, \ldots, p_k, 1^{n-\sum_{i=1}^{k} p_i})$ to T and $B \in \mathcal{S}(T)$ is a matrix that satisfies Definition 2.8, then we say that B realizes the assignment \mathcal{A}.

There are assignments that are not realizable. For instance see Example 2.3 in [7]. However when we study the list $(p_1, p_2, 1^l)$ we have the following result.

Theorem 2.11. [7] Given a tree T on $n = p_1 + p_2 + 1$ vertices, a near-assignment of the list $(p_1, p_2, 1^l)$ to T, $\mathcal{A} = ((A_1, V_1), (A_2, V_2))$, and any distinct real numbers α and β, then there exists $A \in \mathcal{S}(T)$ satisfying the following conditions:

If R is a connected component of $T - V_1$, then

\[
\alpha \text{ is an eigenvalue of } A[R] \text{ if and only if } R \in \mathcal{A}_1.
\]

Similarly, if S is a connected component of $T - V_2$, then

\[
\beta \text{ is an eigenvalue of } A[S] \text{ if and only if } S \in \mathcal{A}_2.
\]

Using Lemma 2.6, Theorem 2.11 and the new version of Definition 2.8 we obtain the following result.

Theorem 2.12. Given a tree T on $n = p_1 + p_2 + 1$ vertices, a near-assignment \mathcal{A} of the list $(p_1, p_2, 1^l)$ to T, and any distinct real numbers α and β, then

1. there exists a realizable assignment B of $(p_1, p_2, 1^l)$ to T.
2. there exists $A \in \mathcal{S}(T)$ that realizes the assignment B with $m_A(\alpha) = p_1$ and $m_A(\beta) = p_2$.

Therefore, we immediately have as a consequence:

Corollary 2.13. For any tree T, if there exists a near-assignment of the list $(M_1(T), p_2, 1^l)$ to T, then

\[
\overline{M}_2(T) \geq M_1(T) + p_2.
\]

3 Upper and lower bounds for \overline{M}_2

In this section, using the reduction theorem for M_2, [7], we directly compute \overline{M}_2 for particular trees. For other kinds of trees, we give bounds on \overline{M}_2.

In [7], the authors directly computed M_2 for generalized stars (for the notion of generalized star see [6]).

Definition 3.1. [6] Let T be a tree and x_0 be a vertex of T. A generalized star T with central vertex x_0 is a tree such that $T - \{x_0\}$ is a union of paths (arms), each one of them is adjacent to x_0 by an endpoint.

Proposition 3.2. [7] Let T be a generalized star on $n \geq 2$ vertices, with f arms of length 1 and g arms of length at least 2. Then:

(A) If $g \geq 2$, then $M_2(T) = f + 2g - 2$.

The maximum multiplicity and the two largest multiplicities of eigenvalues

(B) If \(g \leq 1 \) and \(T \) is not a path, then \(M_2(T) = f + g \).

(C) If \(T \) is a path, then \(M_2(T) = 2 \).

Definition 3.3. [Peripheral HDV, peripheral arm] Given a tree \(T \) and a high-degree vertex \(v \), \(v \) is a peripheral HDV of \(T \) if and only if there is a branch of \(T \) at \(v \) that contains all the other high-degree vertices in \(T \). A peripheral arm of a tree \(T \) is a branch of \(T \) at a peripheral HDV such that the branch does not itself contain any HDV.

Definition 3.4. Throughout this section, we will consider a peripheral HDV \(v \) in a tree \(T \).

The subtree of \(T \) consisting of \(v \) and its peripheral arms will be called \(S \) however, if \(v \) is the only HDV in \(T \), we will let \(S \) be \(v \) and all but one of its peripheral arms (chosen arbitrarily). The point is that \(S \) should be a generalized star containing everything except a single branch of \(T \) at \(v \).

\[(T - S) + w K_1 \] the tree obtained from \(T - S \) by putting a vertex adjacent to \(v \) that is not in \(S \). We denote by \((T - S) + w K_1 \) the tree obtained from \(T - S \) by putting a vertex adjacent to \(v \) that is not in \(S \).

Theorem 3.5. [M_2 Reduction Theorem] Let \(T \) be a tree and \(v \) a peripheral HDV, with \(S \) as defined earlier in this section. Suppose that \(S \) has \(f \) arms of length \(1 \) and \(g \) arms of length at least \(2 \). Then:

(A) If \(g \geq 2 \), then \(M_2(T - S) = M_2(T) - f - 2g + 2 \).

(B) If \(g \leq 1 \), then \(M_2((T - S) + w K_1) = M_2(T) - f - g + 1 \).

In [1] a class of trees was introduced that contains the generalized stars, the superstars.

Definition 3.6. [Peripheral HDV, peripheral arm] Let \(T \) be a tree and \(x_0 \) be a vertex of \(T \). A superstar \(T \) with central vertex \(x_0 \) is a tree such that \(T - \{x_0\} \) is a union of paths.

The focus of this section is to directly compute \(M_2 \) for a subclass of superstars.

Definition 3.7. Let \(T \) be a superstar with central vertex \(x_0 \). A small pincer of \(T \) is a path, \(P \), of \(T - \{x_0\} \) such that:

1. \(P \) is adjacent to \(x_0 \) by a vertex \(u \) of degree two in \(P \).
2. At least one path of \(P - u \) is a vertex.

Definition 3.8. Let \(T \) be a superstar with central vertex \(x_0 \). \(T \) is a small superstar if all paths of \(T - \{x_0\} \) are small pincers or are adjacent to \(x_0 \) by an endpoint (arms).

Example 3.9. The superstar \(T \) of Example 2.4 is a small superstar with central vertex \(4 \). The superstar \(T \) of Example 2.5 is a small superstar with central vertex \(5 \). All stars and generalized stars are small superstars.

The following superstar is not a small superstar

Definition 3.10. Let \(T \) be a tree and \(A \) an assignment of \((M_1(T), p_2, 1^1)\) to \(T \).

1. We refer to \(A \) as an \(M_2 \) assignment to \(T \).
2. If \(M_1(T) + p_2 = M_2(T) \), we refer to \(A \) as an \(M_2 \)-maximal assignment to \(T \).
Remark 3.11. Let T be a tree and $\mathcal{A} = ((A_1, V_1), (A_2, V_2))$ an $\overline{M_2}$ assignment of $(M_1(T), p_2, 1^1)$ to T. Because $M_1(T) = |A_1| - |V_1|$,

1. All components of $T - V_1$ are in A_1.
2. We can assume that if $v \in V_1$ then v is a HDV.
3. Since all components of $T - V_1$ are paths, if v if a peripheral HDV of degree greater or equal to 4 in T then $v \in V_1$.
4. If v is a peripheral HDV, $v \in V_1$ and all peripheral arms have length 1 then they are in A_1 and no one is in A_2 (see Lemma 2.3).

Remark 3.12. Let T be a tree and $\mathcal{A} = ((A_1, V_1), (A_2, V_2))$ an $\overline{M_2}$-maximal assignment of $(M_1(T), p_2, 1^1)$ to T. Because $\overline{M_2}(T) = |A_1| - |V_1| + |A_2| - |V_2|$,

1. All components of $T - V_2$ with more than one vertex are in A_2.
2. We can assume that if $v \in V_2$ then v is a HDV.
3. All components of $T - V_2$ with one vertex that are not components of $T - V_1$ are in A_2.
4. If v is a peripheral HDV, $v \in V_1$ and all peripheral arms have length 1 then using Remark 3.11, 4, we conclude that $v \notin V_2$.
5. If v is a peripheral HDV, $v \in V_1$ and all peripheral arms have length 1, except one, then there is an $\overline{M_2}$-maximal assignment of $(M_1(T), p_2, 1^1)$ to T such that $v \notin V_2$.

Remark 3.13. In some proofs we construct an $\overline{M_2}$-maximal (or simply an $\overline{M_2}$) assignment of $(M_1(T), p_2, 1^1)$ to T, for some integer p_2. In these cases, first we construct an $\overline{M_2}$ assignment of $(M_1(T), p_2, 1^1)$ to T, $\mathcal{A} = ((A_1, V_1), (A_2, V_2))$ by putting the elements in A_1 and in V_1, next we put the elements in A_2 and in V_2, using Remarks 3.11 and 3.12. This construction is in such a way that $M_1(T) = |A_1| - |V_1|$ and $M_1(T) + p_2 = |A_1| - |V_1| + |A_2| - |V_2|$. After using Lemma 2.3 we conclude condition 2 of Definition 2.1 and by Corollary 2.13, we say that $\overline{M_2}(T) = M_1(T) + p_2$.

Proposition 3.14. Let T be a small superstar on $n \geq 2$ vertices, with f arms of length 1, g arms of length at least 2 and h small pincers, with $f + g \geq 2$ or $h \geq 2$. Then:

A. If $g \geq 2$, then $\overline{M_2}(T) = 2h + f + 2g - 2$.
B. If $g \leq 1$ and T is not a path, then $\overline{M_2}(T) = 2h + f + g$.
C. If T is a path, then $\overline{M_2}(T) = 2$.

Proof Let x be the central vertex of T. If S is a small pincer of T, by Theorem 3.5,

$$M_2((T - S) + x, K_1) = M_2(T) - 1.$$

Since T has h small pincers,

$$M_2(T') = M_2(T) - h,$$

where T' is obtained from T by removing all small pincers and by putting h vertices adjacent to x. Consequently, T' is a generalized star with $f + h$ arms of length 1 and g arms of length at least 2. Using Proposition 3.2

$$M_2(T') = \begin{cases}
 f + h + 2g - 2 & \text{if } g \geq 2 \\
 f + h + g & \text{if } g \leq 1 \text{ and } T' \text{ is not a path} \\
 2 & \text{if } T' \text{ is a path}.
\end{cases}$$

Therefore,

$$M_2(T) = \begin{cases}
 f + 2h + 2g - 2 & \text{if } g \geq 2 \\
 f + 2h + g & \text{if } g \leq 1 \text{ and } T' \text{ is not a path} \\
 2 + h & \text{if } T' \text{ is a path}.
\end{cases}$$

Note that if T' is a path with $h = 2$ and $f = g = 0$ then T is not a path and $M_2(T) = M_2(T') + h = 2 + 2 = 4 = 2h + g$. By hypothesis, if $h < 2$ then $f + g \geq 2$. In this case, if T' is a path then $h = 0$ and $f + g = 2$. Consequently, T is a path.
So, we conclude that

\[
M_2(T) = \begin{cases}
 f + 2h + 2g - 2 & \text{if } g \geq 2 \\
 f + 2h + g & \text{if } g \leq 1 \text{ and } T \text{ is not a path} \\
 2 & \text{if } T \text{ is a path.}
\end{cases}
\]

Since \(\overline{M}_2(T) \leq M_2(T)\), we have

(A) If \(g \geq 2\), then \(\overline{M}_2(T) \leq 2h + f + 2g - 2\).
(B) If \(g \leq 1\) and \(T\) is not a path, then \(\overline{M}_2(T) \leq 2h + f + g\).
(C) If \(T\) is a path, then \(\overline{M}_2(T) \leq 2\).

Conversely, since \(T\) is a tree,

\[
M_1(T) = \begin{cases}
 f + h + g - 1 & \text{if } f + g \geq 2 \\
 h + 1 & \text{if } f + g \leq 1.
\end{cases}
\]

We are going to construct an \(\overline{M}_2\) assignment of \((M_1(T), p_2, 1')\), for some integer \(p_2\), to \(T\) (see Remark 3.13).

Case 1 If \(f + g \geq 2\), we put the central vertex of \(T\) in \(V_1\) and we put the \(f + h + g\) paths obtained by removing the central vertex of \(T\) in \(A_1\).

If \(g \geq 2\), we put the central vertex of \(T\) in \(V_2\) and we put the \(h + g\) paths of length at least 2, obtained by removing the central vertex of \(T\) in \(A_2\). So, \(|A_1| - |V_1| = f + g + h - 1 = M_1(T)\). Using Remark 3.13, \(\overline{M}_2(T) \geq f + h + g - 1 + h + g - 1 = f + 2h + 2g - 2\).

If \(g \leq 1\), we put the central vertex of each small pincer of \(T\) in \(V_2\), we put the \(2h + 1\) subtrees obtained by removing the central vertex of all small pincers of \(T\) in \(A_2\). Since \(|A_2| - |V_2| = f + g + h - 1 = M_1(T)\), using Remark 3.13, \(\overline{M}_2(T) \geq f + h + g - 1 + 2h + 1 - h = f + 2h + g\).

Note that if \(T\) is a path and \(f + g \geq 2\) then \(f + g = 2\) and \(h = 0\). Thus, if \(g = 2\), then \(\overline{M}_2(T) \geq f + 2h + 2g - 2 = 2\) and if \(g \leq 1\), then \(\overline{M}_2(T) \geq f + 2h + g = 2\).

Case 2 If \(f + g \leq 1\) then \(h \geq 2\) and \(T\) is not a path. We put the central vertex of each small pincer of \(T\) in \(V_1\) and we put the \(2h + 1\) subtrees obtained by removing the central vertex of all small pincers of \(T\) in \(A_1\). We put the central vertex of \(T\) in \(V_2\) and we put the \(f + h + g\) paths obtained by removing the central vertex of \(T\) in \(A_2\). Since \(|A_1| - |V_1| = h + 1 = M_1(T)\), by Remark 3.13, \(\overline{M}_2(T) \geq h + 1 + f + g + h - 1 = f + g + 2h\).

Consequently,

(A) If \(g \geq 2\), then \(\overline{M}_2(T) \geq 2h + f + 2g - 2\).
(B) If \(g \leq 1\) and \(T\) is not a path, then \(\overline{M}_2(T) \geq 2h + f + g\).
(C) If \(T\) is a path, then \(\overline{M}_2(T) \geq 2\).

Therefore,

(A) If \(g \geq 2\), then \(\overline{M}_2(T) = 2h + f + 2g - 2\).
(B) If \(g \leq 1\) and \(T\) is not a path, then \(\overline{M}_2(T) = 2h + f + g\).
(C) If \(T\) is a path, then \(\overline{M}_2(T) = 2\).

Proposition 3.15. Let \(T\) be a tree and \(v\) a peripheral HDV, with \(S\) as defined earlier in this section. Suppose that \(S\) has 3 arms of length 1 and 0 arms of length at least 2 and \(T \neq S\). Then

\[
\overline{M}_2(T - S) + 2 \leq \overline{M}_2(T) \leq \overline{M}_2(T - S) + 3.
\]

Proof Let \(A = ((A_1, V_1), (A_2, V_2))\) be an \(\overline{M}_2\)-maximal assignment to \(T\). We are going to construct an \(\overline{M}_2\) assignment to \(T - S\), \(A' = ((A_1', V_1'), (A_2', V_2'))\) (see Remark 3.13). Note that \(M_1(T - S) = M_1(T) - 2\). Because \(v\) has degree 4, by Remark 3.11, 3, \(v \in V_1\), the peripheral arms of \(S\) are in \(A_1\) and no one is in \(A_2\). Using Remark 3.12, 4, \(v \notin V_2\). So, let \(F\) be the component of \(T - V_2\) containing \(S\). By Remark 3.12, 1, \(F\) is in \(A_2\).

Let \(A_1' = A_1 \setminus \{\text{the peripheral arms of } S\}\), \(V_1' = V_1 \setminus \{v\}\), \(V_2' = V_2\) and

\[
A_2' = \begin{cases}
 A_2 \setminus \{F\} & \text{if } A_2 \neq \{F\} \\
 T - S & \text{if } A_2 = \{F\}
\end{cases}
\]
By Remark 3.13, \(A' = ((A_1', V_1'), (A_2', V_2')) \) is an \(M_2 \) assignment to \(T - S \) and \(M_2(T - S) \geq M_2(T) - 2 - 1 = M_2(T) - 3 \).

Let \(A = ((A_1, V_1), (A_2, V_2)) \) be an \(M_2 \)-maximal assignment to \(T - S \). We are going to construct an \(M_2 \) assignment to \(T - S \), \(A' = ((A_1', V_1'), (A_2', V_2')) \) (see Remark 3.13). Note that \(M_1(T) = M_1(T - S) + 2 \). Let \(w \) be the vertex of \(T - S \) adjacent to \(v \) in \(T \). If \(w \notin V_2 \), then let \(R \) be the component of \((T - S) - V_2 \) containing \(w \) and let \(P \) be the component of \(T - V_2 \) containing \(S \).

Let \(A'_1 = A_1 \cup \{ \text{the peripheral arms of } S \}, V'_1 = V_1 \cup \{ v \}, V'_2 = V_2 \) and

\[
A'_2 = \begin{cases}
A_2 \setminus \{ R \} \cup \{ P \} & \text{if } R \in A_2 \text{ and } w \notin V_2 \\
A_2 & \text{otherwise}
\end{cases}
\]

By Remark 3.13, \(A' = ((A_1', V_1'), (A_2', V_2')) \) is an \(M_2 \) assignment to \(T \) and \(M_2(T) \geq M_2(T) + 2 \).

Proposition 3.16. Let \(T \) be a tree and \(v \) a peripheral HDV, with \(S \) as defined earlier in this section. Suppose that \(S \) has 1 arm of length 1 and 1 arm of length at least 2 (or \(T \) has 2 arms of length 1 and 0 arms of length at least 2) and \(T \neq S \). Then

\[
M_2(T - S) + 1 \leq M_2(T) \leq M_2(T - S) + 2.
\]

Proof Let \(A = ((A_1, V_1), (A_2, V_2)) \) be an \(M_2 \)-maximal assignment to \(T \). We are going to construct an \(M_2 \) assignment to \(T - S \), \(A' = ((A_1', V_1'), (A_2', V_2')) \) (see Remark 3.13). Note that \(M_1(T - S) = M_1(T) - 1 \).

Using Remark 3.11, 1, if \(v \) is in \(V_1 \), then the peripheral arms of \(S - v \) are in \(A_1 \). Using Remark 3.12, 5, without loss of generality, we can assume that \(v \notin V_2 \). Let \(F \) be the component of \(T - V_2 \) containing \(S \). By Remark 3.12, 1 and 3, \(F \) is in \(A_2 \).

Let \(A'_1 = A_1 \setminus \{ \text{the peripheral arms of } S \}, V'_1 = V_1 \setminus \{ v \}, V'_2 = V_2 \) and

\[
A'_2 = \begin{cases}
A_2 \setminus \{ F \} & \text{if } A_2 \neq \{ F \} \\
T - S & \text{if } A_2 = \{ F \}
\end{cases}
\]

By Remark 3.13, \(A' = ((A_1', V_1'), (A_2', V_2')) \) is an \(M_2 \) assignment to \(T - S \) and \(M_2(T - S) \geq M_2(T) - 1 - 1 = M_2(T) - 2 \).

If \(v \) is not in \(V_1 \), since \(v \) has degree 3 in \(T \), then \(w \in V_1 \). By Remark 3.11, 1, \(S \) is in \(A_1 \). By Remark 3.12, 3, we can assume, without loss of generality, that \(v \in V_2 \) and the peripheral arms of \(S \) are in \(A_2 \).

Let \(A'_1 = A_1 \setminus \{ S \}, V'_1 = V_1 \setminus \{ v \}, V'_2 = V_2 \), \(A'_2 = A_2 \setminus \{ \text{the peripheral arms of } S \} \).

By Remark 3.13, \(A' = ((A_1', V_1'), (A_2', V_2')) \) is an \(M_2 \) assignment to \(T - S \) and \(M_2(T - S) \geq M_2(T) - 1 - 1 = M_2(T) - 2 \).

Let \(A = ((A_1, V_1), (A_2, V_2)) \) be an \(M_2 \)-maximal assignment to \(T - S \). We are going to construct an \(M_2 \) assignment to \(T \), \(A' = ((A_1', V_1'), (A_2', V_2')) \) (see Remark 3.13). Note that \(M_1(T) = M_1(T - S) + 1 \). Let \(w \) be the vertex of \(T - S \) adjacent to \(v \) in \(T \). If \(w \notin V_2 \), then let \(F \) be the component of \((T - S) - V_2 \) containing \(w \) and let \(P \) be the component of \(T - V_2 \) containing \(S \).

Let \(A'_1 = A_1 \cup \{ \text{the peripheral arms of } S \}, V'_1 = V_1 \cup \{ v \}, V'_2 = V_2 \) and

\[
A'_2 = \begin{cases}
A_2 \setminus \{ F \} \cup \{ P \} & \text{if } F \in A_2 \text{ and } w \notin V_2 \\
A_2 & \text{otherwise}
\end{cases}
\]

By Remark 3.13, \(A' = ((A_1', V_1'), (A_2', V_2')) \) is an \(M_2 \) assignment to \(T \) and \(M_2(T) \geq M_2(T - S) + 1 \).

Example 3.17. Let \(T \) be the following tree.
Let H be the subtree obtained from T by removing vertices 11, 12, 13. By Proposition 3.16,
\[\overline{M_2}(H) + 1 \leq \overline{M_2}(T) \leq \overline{M_2}(H) + 2. \]

Since H is a small superstar with central vertex 4, by Proposition 3.14, $\overline{M_2}(H) = 4 + 0 + 4 - 2 = 2$. So,
\[5 \leq \overline{M_2}(T) \leq 6. \]

4 An algorithm for $\overline{M_2}$

The purpose of this section is to find simple reductions of the initial tree in such a way that we know the effect of each reduction on $\overline{M_2}$. The process may be continued until a small superstar, for which $\overline{M_2}$ is known (Proposition 3.14), or until a subtree for which $\overline{M_2}$ has bounds (Section 3).

Definition 4.1. (Peripheral SHDV, peripheral super path) Let T be a tree that is not a small superstar. A peripheral superstar high degree vertex (SHDV) v of T is an HDV vertex of T such that

1. there is a unique subtree of $T - v$, R, that contains high-degree vertices;
2. $T - R$ is a small superstar;
3. if $w \in R$ and w is adjacent to v, then w does not satisfy 1, 2.

A peripheral super path of T at v (v is a SHDV) is a path of $(T - R) - v$. There are two kinds of peripheral super paths of T at v (SHDV): peripheral arms and small pincers.

Example 4.2. Consider the tree T of Example 3.17.

The vertices 4 and 8 are peripheral superstar high degree vertices.

The vertex 2 is not a peripheral superstar high degree vertex because it is adjacent to vertex 4 and this vertex satisfies conditions 1 and 2 of Definition 4.1.

The subtree of T generated by vertices 1, 2, 3 is a peripheral super path of T at 4, but it is not a peripheral arm of T at 4 (it is a small pincer).

Definition 4.3. Throughout this section, we will consider a peripheral SHDV v in a tree T that is not a small superstar. The subtree of T consisting of v and its peripheral super paths will be called Q. Let w be the one vertex adjacent to v that is not in Q.

Remark 4.4. Let T be a tree and $A = (A_1, V_1), (A_2, V_2)$ an $\overline{M_2}$ assignment of $(M_1(T), p_2, 1^1)$ to T. Because $M_1(T) = |A_1| - |V_1|$, we have

1. All components of $T - V_1$ are in A_1.
2. We can assume that if $v \in V_1$ then v has degree greater than two in T.
3. Since all components of $T - V_1$ are paths, if v is a peripheral SHDV of degree greater or equal to 4 in T then $v \in V_1$ or there is at most one peripheral arm adjacent to v and the central vertex of each small pincer adjacent to v is in V_1.
4. If v is a peripheral SHDV, $v \in V_1$ and all peripheral super paths adjacent to v have length 1 then they are in A_1 and no one is in A_2 (see Lemma 2.3).
Remark 4.5. Let T be a tree and $A = ((A_1, V_1), (A_2, V_2))$ an \overline{M}_2-maximal assignment of $(M_1(T), p_2, 1^1)$ to T. Because $\overline{M}_2(T) = |A_1| - |V_1| + |A_2| - |V_2|$, we can assume that if $v \in V_2$ then v has degree greater than two in T.

(1) All components of $T - V_2$ with more than one vertex are in A_2.

(2) We can assume that if $v \in V_2$ then v has degree greater than two in T.

(3) All components of $T - V_2$ with one vertex that are not components of $T - V_1$ are in A_2.

(4) If v is a peripheral SHDV, $v \in V_1$ and all peripheral super paths adjacent to v have length 1, then using Remark 4.4, we conclude that $v \notin V_2$.

(5) If v is a peripheral SHDV, $v \in V_1$ and all peripheral super paths adjacent to v have length 1, except one, then there is an \overline{M}_2-maximal assignment of $(M_1(T), p_2, 1^1)$ to T such that $v \notin V_2$.

Remark 4.6. In some proofs we construct an \overline{M}_2-maximal (or simply an \overline{M}_2) assignment of $(M_1(T), p_2, 1^1)$ to T, for some integer p_2. In these cases, first we construct an \overline{M}_2 assignment of $(M_1(T), p_2, 1^1)$ to T, $A = ((A_1, V_1), (A_2, V_2))$ by putting the elements in A_1 and in V_1, next we put the elements in A_2 and in V_2, using Remarks 4.4 and 4.5. This construction is in such a way that $M_1(T) = |A_1| - |V_1|$ and $M_1(T) + p_2 = |A_1| - |V_1| + |A_2| - |V_2|$. After using Lemma 2.3 we conclude condition 2 of Definition 2.1 and by Corollary 2.13, we say that $\overline{M}_2(T) \geq M_1(T) + p_2$.

Proposition 4.7. Let T be a tree that is not a small superstar and v a peripheral SHDV, with Q as defined earlier in this section. Suppose that Q has $h \geq 1$ small pincers and the degree of v in T is greater than 4. Let H be the graph obtained from T by removing one small pincer of Q. Then

$$\overline{M}_2(H) = \overline{M}_2(T) - 2.$$

Proof By Proposition 3.16, $\overline{M}_2(H) \geq \overline{M}_2(T) - 2$.

Let $A = ((A_1, V_1), (A_2, V_2))$ be an \overline{M}_2-maximal assignment to H. We are going to construct an \overline{M}_2 assignment to T, $A' = ((A'_1, V'_1), (A'_2, V'_2))$ (see Remark 4.6). Note that $M_1(T) = M_1(H) + 1$. Since the degree of v in T is greater than 4, we conclude that $v \in V_1 \cup V_2$.

Suppose that $v \in V_1 \cap V_2$. Let P be the small pincer $T - H$.

Let $A'_1 = A_1 \cup \{P\}$, $V'_1 = V_1$, $V'_2 = V_2$ and $A'_2 = A_2 \cup \{P\}$.

By Remark 4.6, $A' = ((A'_1, V'_1), (A'_2, V'_2))$ is an \overline{M}_2 assignment to T and $\overline{M}_2(T) \geq \overline{M}_2(H) + 2$.

Suppose that $v \notin V_1 \cap V_2$. Let x be the central vertex of the small pincer, P, of $T - H$.

Let $A'_1 = A_1 \cup \{P\}$, $V'_1 = V_1$, $A'_2 = A_2 \cup \{P\}$ (the peripheral arms of P at x) and $V'_2 = V_2 \cup \{x\}$.

By Remark 4.6, $A' = ((A'_1, V'_1), (A'_2, V'_2))$ is an \overline{M}_2 assignment to T and $\overline{M}_2(T) \geq \overline{M}_2(H) + 2$.

Suppose that $v \notin V_1 \cup V_2$. Let x be the central vertex of the small pincer, P, of $T - H$.

Let $V'_1 = V_1 \cup \{x\}$, $A'_1 = A_1 \cup \{P\}$ (the peripheral arms of P at x), $A'_2 = A_2 \cup \{P\}$ and $V'_2 = V_2$.

By Remark 4.6, $A' = ((A'_1, V'_1), (A'_2, V'_2))$ is an \overline{M}_2 assignment to T and $\overline{M}_2(T) \geq \overline{M}_2(H) + 2$.

Consequently, $\overline{M}_2(T) = \overline{M}_2(H) + 2$.

Lemma 4.8. Let T be a tree that is not a small superstar. Suppose that v is a peripheral SHDV in T with Q, w as defined earlier in this section. Then, there exists an \overline{M}_2-maximal assignment to T, $A = ((A_1, V_1), (A_2, V_2))$, in which $v \in V_1 \cup V_2$.

Moreover,

(1) If v has at least two peripheral arms of length at least 2, then there exists an \overline{M}_2-maximal assignment, $A' = ((A'_1, V'_1), (A'_2, V'_2))$ in which $v \notin V'_1 \cap V'_2$.

(2) If v has at most one peripheral arm of length at least 2 and w has degree two in T, then there exists an \overline{M}_2-maximal assignment, $A'' = ((A''_1, V''_1), (A''_2, V''_2))$ such that v is in exactly one V''_1 or V''_2.

(3) If Q has f peripheral arms of length 1 and $g \leq 1$ peripheral arms of length at least 2, $f + g > 2$ and $A''' = ((A'''_1, V'''_1), (A'''_2, V'''_2))$ is an \overline{M}_2-maximal assignment to T, then $v \in V'''_1$.

(4) If Q has f peripheral arms of length 1 and $g \leq 1$ peripheral arms of length at least 2, $f + g > 2$ and $A''' = ((A'''_1, V'''_1), (A'''_2, V'''_2))$ is an \overline{M}_2-maximal assignment to T, then $v \in V'''_1$.

Proof Let $A = ((A_1, V_1), (A_2, V_2))$ be an \overline{M}_T-maximal assignment to T in which $v \not\in V_1 \cup V_2$. Suppose that Q has f peripheral arms of length 1 and g peripheral arms of length at least 2. We are going to construct an \overline{M}_T-maximal assignment to T, $B = ((B_1, U_1), (B_2, U_2))$ (see Remark 4.6).

If $f + g \geq 2$, then by Remark 4.4, 1, the component, R, of $T - V_1$ containing v is in A_1. Note that the peripheral arms of Q might be in R.

Let $B_1 = (A_1 \setminus \{R\}) \cup \{\text{two peripheral arms of } Q\}$, $U_1 = V_1 \cup \{v\}$, $B_2 = A_2$ and $U_2 = V_2$.

By Remark 4.6 and the cardinality of B, $B = ((B_1, U_1), (A_2, V_2))$ is an \overline{M}_T-maximal assignment to T in which $v \in U_1$.

If $f + g \leq 1$, by Remark 4.4, 3 and Remark 4.5, 1 and 3, the central vertex of each small pincer of Q is in $V_1 \cup V_2$. By Remark 4.5, 1, the component, R, of $T - V_2$ containing v, is in A_2.

Let $B_1 = A_1$, $U_1 = V_1$, $B_2 = (A_1 \setminus \{R\}) \cup \{\text{two peripheral super paths of } Q\}$ and $U_2 = V_2 \cup \{v\}$.

By Remark 4.6 and the cardinality of B, $B = ((B_1, U_1), (B_2, U_2))$ is an \overline{M}_T-maximal assignment to T in which $v \in U_2$. So, there exists an \overline{M}_T-maximal assignment to T, $A = ((A_1, V_1), (A_2, V_2))$ in which $v \in V_1 \cup V_2$.

1) By what we just proved, there exists an \overline{M}_T-maximal assignment to T,

$$A = ((A_1, V_1), (A_2, V_2)),$$

in which $v \in V_1 \cup V_2$. Suppose without loss of generality that $v \in V_1 \setminus V_2$. We are going to construct an \overline{M}_T-maximal assignment to T, $A' = ((A_1', V_1'), (A_2', V_2'))$, in which $v \in V_1' \cap V_2'$. (see Remark 4.6). By Remark 4.5, 1 and 3, the component, R, of $T - V_2$ containing v, is in A_2. Note that the peripheral arms of Q might be in R.

Let $A_1' = A_1$, $V_1' = V_1$, $V_2' = V_2 \cup \{v\}$ and $A_2' = (A_2 \setminus \{R\}) \cup \{\text{two peripheral arms of length at least two of } Q\}$.

Since $|A_2'| - |V_2'| = |A_2'| - |V_2'|$, by Remark 4.6 and the cardinality of A', $A' = ((A_1', V_1'), (A_2', V_2'))$ is an \overline{M}_T-maximal assignment to T, in which $v \in V_1 \cap V_2$.

2) By what we just proved, there exists an \overline{M}_T-maximal assignment,

$$A = ((A_1, V_1), (A_2, V_2)),$$

in which $v \in V_1 \cup V_2$. Suppose $v \in V_1 \cap V_2$. We are going to construct an \overline{M}_T-maximal assignment to T, $A'' = ((A_1'', V_1''), (A_2'', V_2''))$, in which $v \in V_1'' \cap V_2''$. (see Remark 4.6) Using Remark 4.4, 1, each peripheral super path of Q is in A_1. By Remark 4.5, 1, the longer arm of Q and the small pincers of Q are in A_2 and there is not a peripheral arm of length 1 of Q in A_2. By Remark 4.5, 2, $w \not\in V_2$. Let R be the component of $T - V_2$ containing w and let F be the component of $T - ((V_2 \setminus \{v\}) \cup \{\text{the central vertex of each small pincer of } Q\})$ containing v and w. By Remark 4.5, 1, $F \in A_2$.

Let $A_1'' = A_1$, $V_1'' = V_1$, $V_2'' = V_2 \cup \{v\}$ and $A_2'' = (A_2 \setminus \{R\}) \cup \{\text{the peripheral super paths of length at least two of } Q, R\} \cup \{v\}$.

If Q does not have a longer arm or $R \not\in A_2$ then $|A_2''| - |V_2''| > |A_2| - |F_2|$. This is impossible because A is an \overline{M}_T-maximal assignment to T. So, $v \not\in V_1 \cap V_2$.

If Q has a longer arm and $R \in A_2$ then $|A_2| - |V_2| = |A_2''| - |V_2''|$. By Remark 4.6 and using the cardinality of A', $A'' = ((A_1', V_1'), (A_2'', V_2''))$ is an \overline{M}_T-maximal assignment to T, in which $v \in V_1'' \cap V_2''$.

3) By what we just proved, there exists an \overline{M}_T-maximal assignment to T, $A'' = ((A_1'', V_1''), (A_2'', V_2''))$.

Lemma 4.9. Let T be a tree that is not a small superstar. Suppose that v is a peripheral SHDV in T with Q, w as defined earlier in this section. Suppose that Q has f peripheral arms of length 1 and $g \leq 1$ peripheral arms of length at least 2 and the degree of w in T is 2. Then, there exists an \overline{M}_T-maximal assignment to T, $A = ((A_1, V_1), (A_2, V_2))$, in which:
(1) If \(f + g \geq 1 \), then \(v \in V_1 \) and the central vertex of each small pincer of \(Q \) belongs to \(V_2 \).

(2) If \(f + g = 0 \), then \(v \in V_2 \) and the central vertex of each small pincer of \(Q \) belongs to \(V_1 \).

Proof

(1) By 2 of Lemma 4.8, let \(A = ((A_1, V_1), (A_2, V_2)) \) be an \(\overline{M}_2 \)-maximal assignment to \(T \) such that \(v \) is exactly one \(V_1 \) or \(V_2 \).

If \(f + g > 1 \), since \(v \) is a peripheral SHDV and \(w \notin V_1 \) (the degree of \(w \) in \(T \) is 2), by Remark 4.4, 1, each peripheral super path of \(Q \) belongs to \(A_1 \) and \(v \in V_1 \). In this case, because \(v \notin V_2 \) and \(A \) is an \(\overline{M}_2 \)-maximal assignment to \(T \), we conclude that the central vertex of each small pincer of \(Q \) is in \(V_2 \) and the peripheral arms of each small pincer of \(Q \) are in \(A_2 \).

Suppose that \(f + g = 1 \) and \(v \in V_2 \), then by Remark 4.4, 1, the central vertex of each small pincer of \(Q \) is in \(V_1 \) and the peripheral arms of each small pincer of \(Q \) are in \(A_1 \). By Remark 4.5, 1 and 3, the peripheral super paths of \(Q \) are in \(A_2 \). Since \(w \) has degree two in \(T \), we can assume that \(w \notin V_1 \cup V_2 \). We are going to construct an \(\overline{M}_2 \)-maximal assignment to \(T \), \(A' = ((A'_1, V'_1), (A'_2, V'_2)) \), in which \(v \in V_1 \) and the central vertex of each small pincer of \(Q \) is in \(V_2 \) (see Remark 4.6). Let \(R \) be the component of \(T - V_1 \) containing \(v, w \). By Remark 4.4, 1, \(R \in A_1 \). Let \(P \) be the component of \(T - V_2 \), containing \(w \). Since \(P \neq R \), by Remark 4.5, 1 and 3, \(P \in A_2 \). Let \(B \) be the component of \(T - (V_2 \setminus \{v\}) \cup \{\text{the central vertex of each small pincer of } Q\} \), containing \(v \) and \(w \). Let \(C \) be the component of \(T - (V_1 \cup \{v\}) \), containing \(w \). Note that \(B \neq C \).

Let

\[
A'_1 = (A_1 \setminus \{\text{the peripheral arms of each small pincer of } Q, R\}) \cup \{C, \text{ the peripheral super paths of } Q\},
\]

\[
V'_1 = (V_1 \setminus \{\text{the central vertex of each small pincer of } Q\}) \cup \{v\},
\]

\[
A'_2 = (A_2 \setminus \{\text{the peripheral super paths of } Q, P\}) \cup \{\text{the peripheral arms of each small pincer of } Q, B\}
\]

and \(V'_2 = (V_2 \setminus \{v\}) \cup \{\text{the central vertex of each small pincer of } Q\} \).

Since \(|A'_1| - |V'_1| = |A_1| - |V_1| \) and \(|A'_2| - |V'_2| = |A_2| - |V_2| \) and by Remark 4.6, we get an \(\overline{M}_2 \)-maximal assignment to \(T \), \(A' = ((A'_1, V'_1), (A'_2, V'_2)) \), where \(v \in V'_1 \) and the central vertex of each small pincer of \(Q \) belongs to \(V'_2 \).

(2) By 2 of Lemma 4.8, let \(A = ((A_1, V_1), (A_2, V_2)) \) be an \(\overline{M}_2 \)-maximal assignment to \(T \) such that \(v \) is exactly one \(V_1 \) or \(V_2 \). Since \(f + g = 0 \), \(v \) is a peripheral SHDV and \(w \notin V_1 \), if \(v \in V_1 \) then by Remark 4.4, 1, the peripheral super paths of \(Q \) are in \(A_1 \). Let \(F \) be the component of \(T - V_1 \) containing \(w \). By Remark 4.4, 1, \(F \in A_1 \). Let \(H \) be the component of \(T - (V_1 \setminus \{v\}) \cup \{\text{the central vertex of each small pincer of } Q\} \) containing \(w \) and \(v \). Let

\[
A'_1 = (A_1 \setminus \{\text{the peripheral super paths of } Q, F\}) \cup \{\text{the peripheral arms of each small pincer of } Q, H\},
\]

\[
V'_1 = (V_1 \setminus \{v\}) \cup \{\text{the central vertex of each small pincer of } Q\}.
\]

Since \(|A'_1| - |V'_1| = |A_1| - |V_1| + 1 \) we conclude that \(A \) is not an \(\overline{M}_2 \)-maximal assignment to \(T \). Impossible. Consequently, \(v \notin V_1 \) and \(v \in V_2 \).

Therefore, the central vertex of each small pincer of \(Q \) belongs to \(V_1 \). \(\square \)

Theorem 4.10. (\(\overline{M}_2 \) Reduction Theorem) Let \(T \) be a tree that is not a small superstar and \(v \) a peripheral SHDV, with \(Q, w \) as defined earlier in this section. Suppose that \(Q \) has \(f \) peripheral arms of length 1, \(g \) peripheral arms of length at least 2 and \(h \) small pincers. Then:

(A) If \(g \geq 2 \), then \(\overline{M}_2(T - Q) = \overline{M}_2(T) - f - 2g - 2h + 2 \).

(B) If \(g \leq 1 \) and the degree of \(w \) in \(T \) is 2, then \(\overline{M}_2((T - Q) + w K_1) = \overline{M}_2(T) - f - g - 2h + 1 \), where \((+w K_1)\) means that we put a vertex adjacent to \(w \).

(C) If \(g \leq 1 \), the degree of \(w \) in \(T \) is greater than 2 and \(f + g > 2 \) then

\[
\overline{M}_2((T - Q) + w S_4) = \overline{M}_2(T) - f - g - 2h + 3,
\]
where S_4 is the star with 3 arms of length 1 and $(+_w S_4)$ means that S_4 is adjacent to w by the central vertex.

Proof Part A: Let $A = ((A_1, V_1), (A_2, V_2))$ be an \overline{M}_2-maximal assignment to $T - Q$. We are going to construct an \overline{M}_2 assignment to T, $A' = ((A'_1, V'_1), (A'_2, V'_2))$ (see Remark 4.6).

Let $A'_1 = A_1 \cup \{\text{the peripheral super paths of } Q\}$, $V'_1 = V_1 \setminus \{v\}$, $A'_2 = A_2 \cup \{\text{the peripheral super paths of length at least two of } Q\}$ and $V'_2 = V_2 \setminus \{v\}$.

Since $M_1(T) = M_1(T - Q) + f + g + h - 1$, by Remark 4.6, this creates an \overline{M}_2 assignment to T, $A' = ((A'_1, V'_1), (A'_2, V'_2))$ and $\overline{M}_2(T) \geq \overline{M}_2(T - Q) + f + g + h - 1 = \overline{M}_2(T) + f + 2g + 2h - 2$.

Conversely, by Lemma 4.8, 1, there exists an \overline{M}_2-maximal assignment to T, $A = ((A_1, V_1), (A_2, V_2))$, in which v is in $V_1 \cap V_2$. We are going to construct an \overline{M}_2 assignment to $T - Q$, $A' = ((A'_1, V'_1), (A'_2, V'_2))$. By 10 Remarks 4.4, 1 and 45.1, each of the $f + g + h$ peripheral super paths of Q might be in A_1 and each of the $g + h$ peripheral super paths of length at least 2 of Q might be in A_2.

Let $A'_1 = A_1 \setminus \{R\} \cup \{\text{the peripheral super paths of } Q, P\}$, $V'_1 = V_1 \setminus \{v\}$, $A'_2 = A_2 \setminus \{U\} \cup \{\text{the peripheral arms of each small pincer of } Q\}$ and $V'_2 = V_2 \setminus \{\text{the central vertex of each small pincer of } Q\}$.

Since $M_1(T) = M_1((T - Q) + w K_1) + f + g + h - 1$, by Remark 4.6, this creates an \overline{M}_2 assignment to T, $A' = ((A'_1, V'_1), (A'_2, V'_2))$ and $\overline{M}_2(T) \geq \overline{M}_2((T - Q) + w K_1) + f + g + h - 1 + 2h = \overline{M}_2(T) + f + g + 2h - 1$.

Suppose that $f + g \geq 0$. Let B be the component of $T - (V_2 \cup \{v\})$ containing w and C be the component of $T - (V_1 \cup \{v\})$ containing w and v.

Let $A'_1 = A_1 \setminus \{R\} \cup \{\text{the peripheral arms of each small pincer of } Q, C\}$, $V'_1 = V_1 \setminus \{v\}$ and $A'_2 = (A_2 \setminus \{U\}) \cup \{\text{the peripheral super paths of } P\}$.

Since $M_1(T) = M_1(T - Q + w K_1) + f + g + h - 1$, by Remark 4.6, this creates an \overline{M}_2 assignment to T, $A' = ((A'_1, V'_1), (A'_2, V'_2))$ and $\overline{M}_2(T) \geq \overline{M}_2((T - Q) + w K_1) + f + g + h + 2h - 1 = \overline{M}_2(T - Q) + f + g + 2h - 1$.

Conversely, suppose that $f + g \geq 1$. By Lemma 4.9, 1, there exists an \overline{M}_2-maximal assignment to T, $A = ((A_1, V_1), (A_2, V_2))$, in which v is in V_1 and the central vertex of each small pincer of Q is in V_2. We are going to construct an \overline{M}_2 assignment to $(T - Q) + w K_1$, $A' = ((A'_1, V'_1), (A'_2, V'_2))$ (see Remark 4.6). By Remarks 4.4, 1 and 2, and 45.1, 3, each of the $f + g + h$ peripheral super paths of Q might be in A_1, the peripheral arms of each small pincer of Q might be in A_2 and $w \not\in V_1 \cup V_2$. Let R be the component of $T - V_1$ containing w and v. By Remarks 4.4, 1 and 45.1, $R \in A_1$ and $P \in A_2$.

Let $A'_1 = A_1 \setminus \{R\} \cup \{\text{the peripheral super paths of } Q\}$, $V'_1 = V_1 \setminus \{v\}$, $A'_2 = (A_2 \setminus \{P\}) \cup \{\text{the peripheral arms of each small pincer of } Q\}$ and $V'_2 = V_2 \setminus \{\text{the central vertex of each small pincer of } Q\}$.

Since $M_1((T - Q) + w K_1) = M_1(T) - f - g - h + 1$, by Remark 4.6, this creates an \overline{M}_2 assignment to $(T - Q) + w K_1$, $A' = ((A'_1, V'_1), (A'_2, V'_2))$ and $\overline{M}_2(T) \geq \overline{M}_2((T - Q) + w K_1) + f - g - h + 1 + 2h = \overline{M}_2(T) - f - g - 2h + 1$.

Suppose that $f + g = 0$. By Lemma 4.9, 2, there exists an \overline{M}_2-maximal assignment to T, $A = ((A_1, V_1), (A_2, V_2))$, in which v is in V_2, the central vertex of each small pincer of Q is in V_1 and $w \not\in V_1 \cup V_2$. We are going to construct an \overline{M}_2 assignment to $(T - Q) + w K_1$, $A' = ((A'_1, V'_1), (A'_2, V'_2))$. By Remarks 4.4, 1 and 50...
4.5, 1 and 3, each of the h small pinners of Q might be in A_2 and the peripheral arms of each small pinner of Q might be in A_1. Let R be the component of $T - V_1$ containing v, w and let P be the component of $T - V_2$ containing w. By Remarks 4.4, 1 and 4.5, 1 and 3, $R \in A_1$ and $P \in A_2$. Let P' be the component of $((T - Q) + w \ K_1) - (V_2 \setminus \{v\})$ containing $wand K_1$, and let R' be the component of $((T - Q) + w \ K_1) - (V_1 \setminus \{the central vertex of each small pinner of $Q\})$ containing w and K_1.

Let $A_1' = (A_1 \setminus \{R, the peripheral arms of each small pinner of $Q\}) \cup \{R'\}$, $V_1' = V_1 \setminus \{the central vertex of each small pinner of $Q\}$, $V_2' = V_2 \setminus \{v\}$ and $A_2' = (A_2 \setminus \{P, the peripheral super paths of $Q\}) \cup \{P'\}$.

Since $M_1((T - Q) + w \ K_1) = M_1(T) - h$, by Remark 4.6, this creates an \overline{M}_2 assignment to $(T - Q) + w \ K_1$, $A' = ((A_1', V_1'), (A_2', V_2'))$ and $\overline{M}_2((T - Q) + w \ K_1) \geq \overline{M}_2(T) - 2h + h + h + 1 = \overline{M}_2(T) - f + g - 2h + 1$.

So, we have $\overline{M}_2((T - Q) + w \ K_1) = \overline{M}_2(T) - f + g - 2h + 1$.

Part C: Let $A = ((A_1, V_1), (A_2, V_2))$ be an \overline{M}_2-maximal assignment to $(T - Q) + w \ S_4$. We are going to construct an \overline{M}_2 assignment to $T, A' = ((A_1', V_1'), (A_2', V_2'))$. Let x be the central vertex of S_4.

By Lemma 4.8, 3 and by Remark 4.4, 1, $x \in V_1$ and the peripheral arms of S_4 are in A_1. By Remark 4.5, 4, $x \notin V_2$. Let R be the component of $((T - Q) + w \ S_4) - V_2$ containing S_4. By Remark 4.5, 1, R is in A_2. Let R' be the component of $T - (V_2 \cup \{the central vertex of each small pinner of $Q\})$ containing v.

Let $A_1' = (A_1 \setminus \{the peripheral arms of S_4\}) \cup \{the peripheral super paths of $Q\}, V_1' = (V_1 \setminus \{x\}) \cup \{v\}, V_2' = V_2 \cup \{the central vertex of each small pinner of $Q\}$ and $A_2' = (A_2 \setminus \{R\}) \cup \{the peripheral arms of each small pinner of $Q, R'\}$.

Since $M_1(T) = M_1((T - Q) + w \ S_4) + f + g + h + 3$, by Remark 4.6, this creates an \overline{M}_2 assignment to $T, A' = ((A_1', V_1'), (A_2', V_2'))$ and $\overline{M}_2(T) \geq \overline{M}_2((T - Q) + w \ S_4) + f + g + h + 3$.

Conversely, let $A = ((A_1, V_1), (A_2, V_2))$ be an \overline{M}_2-maximal assignment to T. By Lemma 4.8, 3, v is in V_1.

If $v \notin V_2$ then by Remark 4.5, 1, the longer arm and the small pinners of Q are in A_2. By Remark 4.4, 1, each of the $f + g + h$ peripheral super paths of Q might be in A_1. If $w \notin V_2$, then let F be the component of $T - V_2$ containing w. Let H be the component of $T - ((V_2 \setminus \{v\}) \cup \{the central vertex of each small pinner of $Q\})$ containing v.

Let $B_1 = A_1, U_1 = V_1, B_2 = (A_2 \setminus \{F, the longer arm and the small pinners of $Q\}) \cup \{the peripheral arms of each small pinner of $Q, H\}$ and $U_2 = (V_2 \setminus \{v\}) \cup \{the central vertex of each small pinner of $Q\}$.

By Remark 4.6, this creates an \overline{M}_2 assignment to $T, B = ((B_1, U_1), (B_2, U_2))$. Using the cardinality of B we conclude that $g = 1, w \notin V_2$ and $F \in A_2$.

We are going to construct, $A' = ((A_1', V_1'), (A_2', V_2'))$, an \overline{M}_2 assignment to $(T - Q) + w \ S_4$. Let x be the central vertex of S_4. Let R' be the component of $((T - Q) + w \ S_4) - (V_2 \setminus \{v\})$ containing x.

Let $A_1' = (A_1 \setminus \{the peripheral super paths of $Q\}) \cup \{the peripheral arms of $S_4\}, V_1' = (V_1 \setminus \{v\}) \cup \{x\}, A_2' = (A_2 \setminus \{F, the longer arm and the small pinners of $Q\}) \cup \{R'\}$ and $V_2' = V_2 \setminus \{v\}$.

Since $M_1((T - Q) + w \ S_4) = M_1(T) - f - g - h + 3$, by Remark 4.6, this creates an \overline{M}_2 assignment to $(T - Q) + w \ S_4, A' = ((A_1', V_1'), (A_2', V_2'))$ and $\overline{M}_2((T - Q) + w \ S_4) \geq \overline{M}_2(T) - f - g - h + 3 + 1 - 1 - h + 1 + 1 = \overline{M}_2(T) - f - g - 2h + 3$.

If $v \notin V_2$, using the maximality of $\{A_1 \setminus \{V_2\}, then the central vertex of each small pinner of Q is in V_2.

We are going to construct an \overline{M}_2 assignment to $(T - Q) + w \ S_4, A' = ((A_1, V_1'), (A_2', V_2'))$. By Remarks 4.4, 1 and 4.5, 1 and 3, each of the $f + g + h$ peripheral super paths of Q might be in A_1 and the peripheral arms of each small pinner of Q might be in A_2. Let R be the component of $T - V_2$ containing v. Let R' be the component of $((T - Q) + w \ S_4) - V_2$ containing x (x is the central vertex of S_4).

Let $A_1' = (A_1 \setminus \{the peripheral super paths of $Q\}) \cup \{the peripheral arms of $S_4\}, V_1' = (V_1 \setminus \{v\}) \cup \{x\}, A_2' = (A_2 \setminus \{R, the peripheral arms of each small pinner of $Q \cup \{R'\} and V_2' = V_2 \setminus \{the central vertex of each small pinner of $Q\}.

Since $M_1((T - Q) + w \ S_4) = M_1(T) - f - g - h + 3$, by Remark 4.6, this creates an \overline{M}_2 assignment to $(T - Q) + w \ S_4, A' = ((A_1, V_1), (A_2', V_2))$ and $\overline{M}_2((T - Q) + w \ S_4) \geq \overline{M}_2(T) - f - g - h + 3 + 2h + h - \overline{M}_2(T) - f - g - 2h + 3$.

Consequently, we have $\overline{M}_2((T - Q) + w \ S_4) = \overline{M}_2(T) - f - g - 2h + 3$.

Example 4.11. Let T be the tree of Example 3.17. Let Q be the subtree of $T generated by vertices 1, 2, 3, 4, 5, 6. Since Q is a small superstar (star is not a small superstar) with 1 arm of length 1, 1 small pinner, and 7 is a vertex
of T with degree 2, by Theorem 4.10,
\[M_2(T) = M_2((T - Q) +_w K_1) + 2, \]
where w is the vertex 7. So, $(T - Q) +_w K_1$ (that is a small superstar with central vertex 8) is the tree

\begin{verbatim}
\node (1) at (0,0) [circle,fill,inner sep=2pt] {10}
\node (2) at (-1,-1) [circle,fill,inner sep=2pt] {9}
\node (3) at (1,-1) [circle,fill,inner sep=2pt] {11}
\node (4) at (-2,-2) [circle,fill,inner sep=2pt] {4}
\node (5) at (-1,-2) [circle,fill,inner sep=2pt] {7}
\node (6) at (1,-2) [circle,fill,inner sep=2pt] {8}
\node (7) at (-2,-3) [circle,fill,inner sep=2pt] {12}
\node (8) at (-1,-3) [circle,fill,inner sep=2pt] {13}
\node (9) at (1,-3) [circle,fill,inner sep=2pt] {10}
\end{verbatim}

By Proposition 3.14,
\[M_2((T - Q) +_w K_1) - J) = 2 + 4 - 2 = 2. \]
Therefore,
\[M_2(T) = 6. \]

Acknowledgement: This work was partially supported by Fundação para a Ciência e Tecnologia and was done within the activities of the Centro de Estruturas Lineares e Combinatórias.

References

[3] C.R. Johnson and A.Leal Duarte., The maximum multiplicity of an eigenvalue in a matrix whose graph is a tree, Linear and Multilinear Algebra 46 (1999), 139-144.