
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CYBERNETICS 1

Weighted Hierarchical Grammatical Evolution
Alberto Bartoli , Mauro Castelli , and Eric Medvet

Abstract—Grammatical evolution (GE) is one of the most
widespread techniques in evolutionary computation. Genotypes
in GE are bit strings while phenotypes are strings, of a language
defined by a user-provided context-free grammar. In this paper,
we propose a novel procedure for mapping genotypes to pheno-
types that we call weighted hierarchical GE (WHGE). WHGE
imposes a form of hierarchy on the genotype and encodes gram-
mar symbols with a varying number of bits based on the relative
expressive power of those symbols. WHGE does not impose any
constraint on the overall GE framework, in particular, WHGE
may handle recursive grammars, uses the classical genetic opera-
tors, and does not need to define any bound in advance on the size
of phenotypes. We assessed experimentally our proposal in depth
on a set of challenging and carefully selected benchmarks, com-
paring the results of the standard GE framework as well as two
of the most significant enhancements proposed in the literature:
1) position-independent GE and 2) structured GE. Our results
show that WHGE delivers very good results in terms of fitness
as well as in terms of the properties of the genotype–phenotype
mapping procedure.

Index Terms—Genetic programming, genotype-phenotype
mapping, representation.

I. INTRODUCTION

GRAMMATICAL evolution (GE) [1], [2] is a variant of
genetic programming (GP) [3] that can evolve com-

plete programs in any language. This capability is directly
derived from the genotype–phenotype mapping of GE: geno-
types in GE are either bit or integer strings mapped to strings
of a language defined by a user-provided context-free gram-
mar (CFG) [4]–[7]. Internally, the functionality of GE follows
standard evolutionary algorithm (EA) approaches. This mecha-
nism relieves the user from the burden of adapting the internals
of the EA to the user’s specific problem, hence favoring GE
usage in a wide range of applications, for example, auto-
matic composition of music [8], road traffic rules synthesis [9],
generation of string similarity indexes suitable for text extrac-
tion [10], optimization of discrete planar truss [11], and even
the design of other optimization algorithms [12].

The success and conceptual elegance of GE have stimulated
a wealth of research in this area, including several proposals
aimed at improving the framework effectiveness. The proposal

Manuscript received May 4, 2018; revised August 7, 2018; accepted
October 15, 2018. This paper was recommended by Associate Editor
P. N. Suganthan. (Corresponding author: Eric Medvet.)

A. Bartoli and E. Medvet are with the Department of Engineering
and Architecture, University of Trieste, 34127 Trieste, Italy
(e-mail: bartoli.alberto@units.it; emedvet@units.it).

M. Castelli is with NOVA Information Management School,
Universidade Nova de Lisboa, 1070-312 Lisbon, Portugal (e-mail:
mcastelli@novaims.unl.pt).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2018.2876563

in [13] could not demonstrate the ability to generate good
solutions, whereas others were designed specifically for par-
ticular cases [14], [15]. Some proposals, however, have been
significantly successful as their ability to deliver better solu-
tions than the standard GE framework was demonstrated in a
broad variety of benchmarks [16], [17]. Position-independent
GE (πGE) modified the standard GE framework only in
terms of a different genotype–phenotype mapping proce-
dure [16], while the recent structure-independent GE (SGE)
advocated a more radical departure from the original frame-
work, based on a different genotypic representation and novel
genetic operators tailored to that representation [17]. In the
event, the user-provided grammar is recursive, SGE requires
that the grammar be modified preliminarily and expressed
in a nonrecursive form, by means of a procedure also
described in [17].

In this paper, we propose a novel variant of GE that we
call weighted hierarchical GE (WHGE). The only change with
respect to the standard GE framework consists of a novel
genotype–phenotype mapping procedure; in particular, WHGE
may operate with standard genetic operators on user-provided
grammars that may possibly be recursive. The derivation tree
of the phenotype is constructed by imposing a form of hierar-
chy on the genotype: the genotype is (recursively) partitioned
in several substrings, each that maps to a subtree of the deriva-
tion tree. Furthermore, genotype partitions are not of the same
size: symbols are weighted based on their expressive power,
that is, a symbol with many derivation options in the gram-
mar will be given more genotype bits than a symbol with few
derivation options.

We assessed our proposal experimentally in depth, on a
number of challenging benchmark problems that we selected
carefully based on the guidelines for the evaluation of GP
approaches proposed in [18] and [19]. WHGE compares very
favorably to GE, πGE, and SGE in terms of the fitness of the
generated solutions.

We extended our assessment to the evolvability of each
GE variant, i.e., the tendency of generating fitter individu-
als during the evolution, as well as to specific properties of
the genotype–phenotype mapping procedures [20], [21], in
particular, the tendency of generating individuals that can-
not be mapped into a phenotype (invalidity), the tendency of
mapping multiple different genotypes on the same phenotype
(degeneracy), the tendency of mapping genotypic neighbors to
phenotypic neighbors (locality), and the combined tendency
of a genetic operator and a mapping procedure to lead to
the same phenotype (neutrality) [22]–[28]. In this respect, we
observed that WHGE tends to exhibit much better evolvabil-
ity and degeneracy than the other variants, while SGE tends
to have the best locality.

2168-2267 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4132-416X
https://orcid.org/0000-0002-8793-1451
https://orcid.org/0000-0001-5652-2113

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 1. CFG in the BNF for mathematical expressions. Following the usual
convention, we specify the starting symbol implicitly as the nonterminal on
the left side of the first rule.

An earlier and very preliminary version of this paper
appeared in [29]. This paper extends the cited paper in several
directions: a more detailed description of the proposed map-
ping and of its motivations, a much broader and deeper set of
experiments, including more benchmark problems and more
competitors, and an analysis of the mapping properties.

This paper is organized as follows. Section II presents
related work and outlines the working principles of the most
significant existing mappings. Section III describes our WHGE
proposal and explains the design motivations. Section IV
describes the experimental assessment and discusses the corre-
sponding results. Section V concludes this paper summarizing
the main findings and suggests avenues for future work.

II. RELATED WORK: GE VARIANTS

The salient aspect of GE is its genotype–phenotype map-
ping procedure, which allows transforming a bit string (the
genotype) in a program (the phenotype), that is, a string
of the language L(G) described by the CFG G. The CFG
is defined by the tuple (N, T, s0, R), where N is the set
of nonterminal symbols, T is the set of terminal symbols
(with T ∩ N = ∅), s0 ∈ N is the starting symbol, and
R is the set of production rules. Fig. 1 shows the produc-
tion rules of an example CFG using the Backus–Naur form
(BNF): the starting symbol is s0 = 〈expr〉, and the corre-
sponding subset R〈expr〉 of production rules consists of three
rules: 〈expr〉 → (〈expr〉 〈op〉 〈expr〉), 〈expr〉 → 〈num〉, and
〈expr〉 → 〈var〉. We call derivation the application of a pro-
duction rule consisting in the replacement of the nonterminal
symbol on the left-hand side of the production rule with the
symbols on the right-hand side.

Before describing our WHGE proposal, we describe the
standard GE procedure [1] and its most significant variants,
πGE [16], and the more recent proposal SGE [17]. These
three frameworks are all used as baselines in our experimental
evaluation of WHGE.

A. Standard GE Mapping

In standard GE [1], the genotype is split into substrings of n
consecutive bits which are then translated into integers using
the natural binary encoding—each integer being called codon.
The value of the parameter n is conventionally set to 8, but in
some applications, it has been set to the lowest value which is
greater than or equal to the maximum number of production
rules for a nonterminal of the grammar (e.g., [10]), with the
aim of reducing degeneracy.

The procedure for mapping the input genotype g into a phe-
notype p is iterative and starts with p = s0, a counter i = 0, and

Fig. 2. Steps of the standard GE mapping procedure with a genotype g of 48
bits and the grammar of Fig. 1. The rightmost column shows the phenotype
p before the derivation of the highlighted nonterminal.

a counter w = 0. Then, the following steps are iterated—Fig. 2
shows an example of execution.

1) The leftmost nonterminal s in p is derived using the jth
production rule in Rs (zero-based indexing). The value
of j is set to gi mod |Rs|, that is, the remainder of the
division between the value gi of the ith codon (zero-
based indexing) and the number |Rs| of production rules
for s.

2) The counter i is incremented; if it exceeds the number of
codons (|g|/n), then i is set to 0 and w is incremented.

3) If p contains at least one nonterminal, return to step 1,
otherwise end.

The reuse of the genotype which is triggered by the first
condition at step 2 is called wrapping. A maximum of nw

wrappings are allowed; whenever all of them are executed, the
mapping is aborted: the individual is then referred to as invalid
or nonvalid and conventionally associated with the worst possi-
ble fitness value [28]. Wrapping allows GE mapping to handle
the case in which the genotype is consumed before the map-
ping is ended, that is, when one or more nonterminals are still
present in the phenotype. This case may occur in particular
with complex or recursive grammars, the latter corresponding
to languages containing nonfinite strings which are, in facts,
of great practical relevance.

B. πGE Mapping

The mapping procedure of πGE [16] is based on the stan-
dard GE procedure: however, instead of deriving the leftmost
nonterminal, the procedure derives a nonterminal which is cho-
sen using the genotype itself. According to the authors, this
modification should decouple the position at which a produc-
tion rule is applied from the choice of the production rule to
apply, the aim of the decoupling being to favor the arising of
useful building blocks (i.e., short subsequences) in the geno-
type. Nevertheless, in their experiments, the authors did not
find any significant evidence of the desired effect. On the other

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BARTOLI et al.: WHGE 3

Fig. 3. Steps of the πGE mapping procedure with the genotype, grammar,
and graphic convention of Fig. 2.

hand, it has been shown experimentally that, for the majority
of the problems, πGE outperformed standard GE [16], [30].

In detail, in πGE, each codon consists of a pair gnont
i , grule

i
of integers, each of n bits, where n is set to 8 by convention.
The mapping procedure is the same as GE, with the excep-
tion of step 1 where the nonterminal of p to be derived is
the jnontth one (zero-based indexing), rather than the leftmost,
with jnont = gnont

i mod nnont, where nnont is the number of
nonterminals in p. Then, the derivation is performed using the
jruleth production rule, with jrule = grule

i mod |Rs|.
Fig. 3 shows an example of the mapping procedure of πGE.

C. SGE

SGE [17] is one of the youngest variants of GE. In this
framework, the linear genotype that characterizes standard GE
and πGE is replaced by a structured one, where fixed-size lists
of integers (genes) correspond to possible derivations of non-
terminals. This representation ensures that the modification of
a gene does not affect the derivation of other nonterminals,
thereby increasing locality [31]. SGE has been shown to be
more effective than standard GE [32] and also to exhibit bet-
ter locality and lower degeneracy [31]. A more recent study
showed that the interaction of genotype size, crossover, and
diversity may reduce the degree to which SGE satisfies these
properties [28].

SGE cannot be applied to recursive grammars, unlike GE,
πGE, and WHGE. The reason for this limitation is in fact
that SGE lacks a mechanism for reusing the genotype. The
inventors of SGE suggested a procedure for transforming any
possibly recursive grammar G into a nonrecursive grammar
G′ [17]: in order to use this procedure, the user must specify
a maximum depth dmax for the derivation trees.

The genotype g in SGE is a fixed-length integer string which
is composed of |N| substrings (genes), that is, one substring gs

for each nonterminal s ∈ N of the grammar G. The length of
each substring gs is determined by the maximum number of

Fig. 4. Steps of the SGE mapping procedure with the grammar of Fig. 1 and
a genotype g of 18 integers (length determined upon the transformation of that
grammar in a nonrecursive grammar with dmax = 4). The rightmost column
shows the phenotype p before the derivation of the highlighted nonterminal.

derivations which can be applied to the corresponding nonter-
minal s according to the nonrecursive grammar G′; the domain
of each codon in the gene is set to {0, . . . , |Rs| − 1}, with Rs

being the production rules for s. As pointed out in [17], by
defining the genotype structure in this manner, SGE guarantees
that the modification of a codon does not affect the derivation
of other nonterminals, thus narrowing the number of changes
that can occur at the phenotypic level.

The mapping function of SGE is an iterative procedure in
which, initially, the phenotype is set to p = s0, and a counter
is for each nonterminal s ∈ N is set to 0—Fig. 4 shows an
example of execution. The following steps are then iterated.

1) The leftmost nonterminal s in p is derived by using the
gs,is th production rule in Rs (zero-based indexing), with
gs,is denoting the value of the isth codon (zero-based
indexing) in gs.

2) The counter is is incremented.
The procedure is iterated until no more nonterminals exist in p.
It can be noted that SGE never aborts the mapping; hence it
never gives invalid individuals.

While GE uses standard operators to explore the search
space looking for good quality solutions, SGE uses tailored
genetic operators able to work with the specific SGE represen-
tation. In particular, the mutation is reminiscent of the integer
flip mutation also used in genetic algorithms. It consists in,
for each codon, changing its value to a new random value in
the appropriate domain, with a probability pmut. Concerning
crossover, it resembles the uniform crossover for bit string
representation. It works by exchanging the genes g1

s , g2
s of the

parent genotypes corresponding to each nonterminal s in a
randomly chosen subset N′ ⊆ N.

III. WHGE

A. Overview

In this section, we provide an overview of our proposed
mapping procedure. We describe the procedure in full detail in
Section III-B and discuss the design rationale in Section III-C.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CYBERNETICS

The mapping from the genotype into the phenotype occurs
in two steps: 1) the genotype is mapped to a derivation tree of
the starting symbol of the CFG and 2) the phenotype is then
obtained by concatenating, from the left to the right, the leaf
nodes of the derivation tree. The first mapping step is based
on the following key ideas: 1) each node of the derivation tree
is associated with a substring of the genotype; 2) the genotype
substring associated with a node is the concatenation of the
substrings associated with the children of that node—hence
the root node of the derivation tree is associated with the full
genotype; and 3) the choice of the production rule for deriving
a node depends only on the genotype substring associated with
that node. This mapping introduces a form of hierarchy in the
genotype.

Another important aspect of our contribution comes from
the observation that different nonterminals of a grammar typi-
cally have widely differing expressive power; that is, they can
result in many or few different sequences of terminals. For
example, in the grammar of Fig. 1, 〈var〉 may be derived in
two different mathematical expressions, 〈num〉 in ten differ-
ent expressions, and 〈expr〉 in, potentially, infinite different
expressions. Associating the same number of bits with every
child node, irrespective of its expressive power, would thus
constitute an inefficient usage of the information encoded
in the genotype. For this reason, WHGE does not split the
genotype into pieces of equal length: WHGE associates each
node with a number of bits that depend on the expressive
power of that node. This feature corresponds to weighting each
node in the hierarchy differently, which motivates the name
that we have chosen for our proposal: weighted hierarchical
mapping (WHGE).

We quantify the expressive power es of a symbol s with
the number of different (partial) derivation trees with which
can be generated from s (es = 1 for terminal symbols). We
compute the expressive power for each symbol in advance,
before starting the evolution, based on the specific gram-
mar used. Since es could not be finite for nonterminals of
recursive grammars (e.g., 〈expr〉 in the grammar Fig. 1), we
count es only for derivation trees with a predefined maxi-
mum depth nd, with nd being a parameter of WHGE: if a
derivation tree still contains nonterminals at depth nd, we
do not further derive them and count the resulting partial
derivation trees without further deriving them. We remark,
though, that the value of this parameter does not directly
affect the maximum depth of phenotypes built with WHGE.
The maximum depth of a phenotype is determined only by
the grammar and the size |g| of the genotype and is, in gen-
eral, larger than nd. In other words, unlike SGE, WHGE does
not require to set the maximum depth of the phenotype in
advance.

B. Mapping Procedure

WHGE is based on a recursive function MAP(s, g′) which
takes as arguments a symbol s ∈ N ∪ T and a bit string g′ and
returns a derivation tree (this function is illustrated below).
The mapping of a genotype g into a phenotype is obtained by
calling MAP(s0, g), with s0 being the starting symbol.

Algorithm 1 WHGE genotype–phenotype mapping procedure.
It is a recursive function initially invoked as MAP(s0, g), with
s0 being the starting symbol of the user-provided grammar.

function MAP(s, g′)
t ← TREENODE(s)
if s ∈ N then
 s is a non-terminal

Rs ← RULESFOR(s)
if |g′| ≥ |Rs| then
 g′ is long enough

(g′′
1, . . . , g′′|Rs|) ← SPLITFORRULE(g′, |Rs|)

i ← LARGESTCARDINDEX(g′′
1, . . . , g′′|Rs|)

else
i ← SHORTESTRULEINDEX(Rs)

end if
(s1, . . . , sn) ← APPLYRULE(Rs, i)
if n = 1 then

g′ ← DROPTRAILINGBIT(g′)
end if
(g′

1, . . . , g′
n) ← SPLITFORCHILDREN(g′, (s1, . . . , sn))

for j ∈ {1, . . . , n} do
APPENDCHILD(t, MAP(sj, g′

j))
end for

end if
return t

end function

The function MAP(s, g′) works as follows (Algorithm 1).
If s is a terminal, the function returns a tree composed of
the only symbol s. Otherwise, the following steps are per-
formed (given a sequence or bit string x, we denote by |x| the
number of elements in the sequence of bits in the bit string,
respectively).

1) Construct the sequence Rs of production rules for s
(RULESFOR() in Algorithm 1).

2) Choose the ith production rule in Rs as follows.
a) If |g′| ≥ |Rs|, then:

i) let lg := �(|g′|/|Rs|)�; partition g′ in |Rs|
nonoverlapping substrings as follows: the first
|g′| mod |Rs| substrings have length lg +
1, and the remaining ones have length lg
[SPLITFORRULE()];

ii) set i equal to the index of the substring with
largest relative cardinality (i.e., the number of
bits set to 1 divided by the length of the sub-
string) [LARGESTCARDINDEX()]; the handling
of ties is explained below.

b) Otherwise, if |g′| < |Rs|, set i equal to the index of
the production rule in Rs which leads to a sequence
of terminals in the lowest number of derivations
from s [SHORTESTRULEINDEX()]—the handling
of ties is explained below.

3) Apply the production rule selected at the previous step
to the input argument s of MAP() [APPLYRULE()].
Let s1, . . . , sn be the n symbols resulting from that
derivation.

4) If n = 1, remove the last bit from the input argument g′
of MAP() [DROPTRAILINGBIT()]. This step is required
for preventing infinite recursion with certain recursive
grammars, as explained below.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BARTOLI et al.: WHGE 5

Algorithm 2 Algorithm for the partitioning of a bit string
based on its length and on the expressive power of symbols.

function WEIGHTEDPARTITIONING(l, (e1, . . . , en))

e ←
i=n�

i=1
log2 ei

(l1, . . . , ln) ←
��

l log2 e1
e

�
, . . . ,

�
l log2 en

e

��

c ← 0

while l >
i=n�

i=0
li do
 distribute remaining bits, if any

j ← 1 + (c mod n)

lj ← lj + 1
c ← c + 1

end while
return (l1, . . . , ln)

end function

5) Partition g′ in n nonoverlapping substrings
[SPLITFORCHILDREN()] such that the length of
the ith substring g′

i is proportional to log2(ei),
where ei is the expressive power of symbol si.
The details for distributing all bits of g′ across
the n substrings are given in Algorithm 2: function
WEIGHTEDPARTITIONING(|g′|, (e1, . . . , en)) is invoked
by SPLITFORCHILDREN(g′, (s1, . . . , sn)) and returns
the length of each substring gi.

6) Build the tree t to be returned, by (recursively) invoking
MAP() once for each of the symbols derived at step 3;
each invocation takes as argument the symbol and the
corresponding genotype portion selected at step 5; the
trees returned by the invocations are appended as chil-
dren of the node previously associated with the input
argument s of MAP().

As an example of step 2b, assume s = 〈expr〉 and con-
sider the grammar of Fig. 1. In this case, both the production
rules 〈expr〉 → 〈var〉 and 〈expr〉 → 〈num〉 could be used
since they result in two derivations to a terminal, whereas
the production rule 〈expr〉 → (〈expr〉 〈op〉 〈expr〉) would
require at least three derivations. Note that the implemen-
tation of SHORTESTRULEINDEX() at step 2b can rely on
data computed in advance, before starting the evolution, as
it suffices to analyze each nonterminal-based only on the
grammar.

Ties at step 2 are handled as follows. Let nties denote the
number of ties, that is, substrings of g′ with maximal rela-
tive cardinality [LARGESTCARDINDEX()] or production rules
which lead to a sequence of terminals with a minimal number
of derivations [SHORTESTRULEINDEX()]. In both cases, we
construct a list with all the nties candidate items and select the
item whose position in the list is equal to the remainder of the
division between |g′| and nties; in case g′ is empty, which might
occur with recursive grammars as explained in the next para-
graph, we use the length of the full genotype |g| as dividend.
The motivation for this choice is to avoid the introduction of
any bias in the mapping procedure, which could itself make
some regions of the phenotype space harder to be explored.

Step 4 prevents infinite recursion with certain recursive
grammars, as explained below. When execution of step 3
results in n = 1, the result of SPLITFORRULE(g′, n) con-
sists of one single element identical to the full input argu-
ment g′ of MAP(). In the absence of the last bit removal
[DROPTRAILINGBIT()], the subsequent recursive invocation
of MAP() would take again g′ as argument. With certain recur-
sive grammars, this flow could result in infinite recursion.
For example, consider the call of MAP(〈a〉, 1110), that is,
s = 〈a〉 and g′ = 1110, with a grammar such that the produc-
tion rules R〈a〉 for s are given by 〈a〉 : := 〈a〉 | b: step 2)a)ii)
would cause the selection of the first production rule (since
‖11‖ > ‖10‖), which would result in splitting g′ in n = 1
portion (i.e., g′ itself), with s1 = 〈a〉, eventually leading to
calling again MAP(〈a〉, 1110). By removing one bit at step 4,
we instead ensure that the second argument of MAP() (i.e., g′)
becomes shorter upon each invocation and eventually becomes
the empty bit string. Therefore, the condition |g′| ≥ |Rs|
(step 3) will eventually switch from true to false and the
selected production rule will eventually change.

Fig. 5 shows an example of the mapping procedure of
WHGE with nd = 2.

C. Design Discussion

One of the key motivations for our proposal was the obser-
vation that imposing a structure on the genotype may have
highly beneficial effects over approaches based on a purely
linear genotype, as advocated and demonstrated by SGE.
Differently from SGE, however, we aimed at designing a map-
ping that could fit the overall GE framework without requiring
any dedicated handling of user-provided grammars or spe-
cialized genetic operators. In this respect, we believe that
hierarchical relations between nodes of a derivation tree are
the most natural way for imposing a structure on the genotype.
We were encouraged to tailor such a structure by weighting
grammar symbols differently, based on the results of early
experiments [29]. The intuition that drove this choice was that
varying the size of each genotype portion depending on the
expressive power of the derived symbol is a way for encoding
information in the genotype more efficiently.

While designing the details of the WHGE mapping, we fol-
lowed design principles aimed at obtaining better invalidity,
degeneracy, and locality properties than those of the standard
GE mapping (see below). We note, though, that whether better
mapping properties may indeed lead to a more effective search
is an open research question [33], [34]. We also emphasize that
we cannot prove that WHGE is guaranteed to exhibit better
properties than GE, with every possible grammar. We assess
the resulting properties of WHGE experimentally, on a broad
range of benchmarks (Section IV-C).

The existing literature indicates that invalidity (the ten-
dency of generating nonvalid individuals) does not provide
any beneficial effect and is detrimental to the evolutionary
process [27], [28]. Representations with this property are used
either by associating nonvalid individuals with the worst pos-
sible fitness [1] or by discarding them and generating new
ones [35], [36]—the latter resulting in wasting computational

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CYBERNETICS

(a)

(b)

Fig. 5. Detailed description of the WHGE mapping of an example genotype g with the grammar of Fig. 1 and maximum tree depth nd = 2. In that grammar, the
expressive power of nonterminal symbols 〈expr〉, 〈op〉, 〈var〉, and 〈num〉 are 66, 4, 2, and 10, respectively. The left figure contains one row for each recursive
invocation of MAP(s, g′) (in depth-first-order), described with arguments, internal values, and return value (as concatenation of leaf nodes). The return value
of the first row is thus the phenotype resulting from the mapping. Indentation levels emphasize the recursion depth. The right figure shows the corresponding
decorated derivation tree, each node associated with an invocation to MAP(s, g′). Each node contains the symbol s, the genotype g′, and the portions of g′ that
will be passed at the next recursive invocations (one for each node child). The genotype g′ is represented as split by SPLITFORRULE(), with the portion chosen
by LARGESTCARDINDEX() for selecting the grammar rule highlighted in bold; g′ is not split when the grammar rule is selected by SHORTESTRULEINDEX()

(∅ denotes the zero-length bit string). (a) MAP() invocations during the mapping procedure. (b) Decorated derivation tree.

resources. Based on these considerations, one of the basic
design principles of WHGE is that nonvalid individuals should
not exist: indeed, in WHGE, every genotype may always be
mapped into a phenotype. In this respect, it can be noted that
WHGE never aborts the mapping, differently than GE. This
guarantee directly derives from the WHGE mapping proce-
dure since: 1) at each derivation, the size of the genotype
substring associated with the resulting nonterminals is strictly
lower than the size of the genotype substring of the derived
nonterminal and 2) when the genotype substring associated
with a nonterminal to be derived is too short, a predefined pro-
duction rule is chosen which will eventually lead to a sequence
composed of only terminals. These two conditions ensure that
endless executions of the mapping procedure cannot occur,
hence eventually delivering a phenotype.

Degeneracy (the tendency of mapping multiple different
genotypes on the same phenotype [23], [37]) is one of the
most prominent properties of the representation [20]. Some
studies speculated that degeneracy may be beneficial to the
search effectiveness, on the grounds that a highly degener-
ated representation might over-represent the optimal solution,
hence increasing the likelihood of a fast convergence toward
that solution [21]. More specific arguments along this line were
provided in [38]: O’Neill and Ryan claimed that: 1) degener-
acy is responsible for the preservation of the functionality of
the phenotype, while still allowing an unrestricted search of
the genotypic search space and 2) degeneracy in the genetic
code has a beneficial effect on the genotypic diversity of
the population. However, we designed WHGE by considering

that degeneracy is an undesirable property, based on several
recent studies that point in this direction [27], [28], [31], [39].
Significant arguments in this respect are that a representation
with high degeneracy tends to over-represent those phenotypes
which are too simple to be effective [27] and that degener-
acy tends to be inversely correlated with evolvability, which
might be explained on the grounds that the tendency of chang-
ing genotypes without changing the resulting phenotypes is
detrimental to the chances of improving fitness [39].

We sought to minimize degeneracy by attempting to mini-
mize a related but different property, that is, redundancy (the
tendency of not using portions of the genotype for mapping
into the phenotype) [23], [37]. Redundancy is one of the
sources for degeneracy since differences in the unused portions
of the genotype cannot result in different phenotypes [25];
hence the greater the redundancy, the greater the degeneracy.
For representations based on bit strings, redundancy may be
visualized with the DU maps introduced in [40]. In WHGE,
we attempt to minimize redundancy by ensuring that every
mapping execution analyzes all bits of the genotype, unlike
GE in which there may be mapping executions that complete
without using all the bits in a genotype. Of course, using
all bits of the genotype does not necessarily imply that all
of them play a crucial role in determining the phenotype.
Indeed, the WHGE mapping does not prevent degeneracy:
for example, there might be different genotypes that lead
to choosing the same value for index i at step 2)a)ii), even
though the content of the ith substring is different for each
genotype.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BARTOLI et al.: WHGE 7

Locality (the tendency of mapping genotypic neighbors to
phenotypic neighbors) is another property of a representation
that has received much attention recently [27], [28]. The exist-
ing literature suggests that locality is beneficial for the quality
of the evolutionary process as a whole [22], [26], but it has
recently been shown that high degeneracy could nullify the
potential advantages of high locality [39]. In other words,
the potential advantages of a representation with high locality
depend also on the other properties of the representation. We
will analyze this issue in depth in Section IV. In WHGE, we
attempted to improve locality by defining a mapping procedure
in which the choice of the production rule tends to be more
robust with respect to small modifications in the genotype than
with standard GE, in particular, for nodes that are close to the
root of the derivation tree. In this respect, consider a differ-
ence of a single bit in the initial portion of a genotype. In GE,
the production rule is chosen according to the remainder of a
division; thus that single bit will modify the choice of the first
production rule. It follows that all subsequent derivations will
likely be modified as well, thereby resulting in a very different
phenotype. In WHGE, the production rule for the root node
and for nodes close to the root is chosen with a criterion that
is likely unaffected by the swapping of a single bit, that is,
the relative cardinality on genotype substrings.

IV. EXPERIMENTAL EVALUATION

A. Benchmark Problems

We performed a number of experiments in order to thor-
oughly assess our WHGE proposal. We used a set of
nine benchmark problems which we chose considering the
guidelines for the evaluation of GP approaches proposed in
[18] and [19]. In particular, we considered two Boolean,
three synthetic, and four symbolic regression problems (among
which three include a testing set different from the training set
used during the evolution).

1) MOPM-3: Multiple outputs parallel 3-bit multiplier—the
value of 3 being chosen as a reasonable intermediate
value with respect to the value of 5, which has been
shown to be the largest for which a correct solution has
been evolved [41]. The fitness is given by the number
of errors among all the input cases.

2) Parity-5 (5-Bit Parity): We included this benchmark,
despite being considered by some rather trivial, because
GE and πGE struggle in evolving an effective solution.
The fitness is given by the number of errors among all
the input cases.

3) KLandscapes-3 and KLandscapes-7: K Landscapes with
k = 3 and k = 7, a tunable, GP-specific bench-
mark which has been proposed recently [42]. We built
a simple CFG for expressing the corresponding trees.
Moreover, in order to conform to the other problems in
which the fitness has to be minimized, we here express
the fitness of a solution t as f (t) = 1 − f0(t), where f0(t)
is the original fitness function described in [42].

4) Text [28]: Generation of a target string Hello world! the
fitness is given by the edit distance between the string
corresponding to the solution and the target string. The

TABLE I
PARAMETERS FOR THE EVOLUTIONARY RUNS

grammar of Text is more complex (see Fig. 6) than those
of the other benchmark problems, both in the depth of
the dependencies among nonterminals and in the number
of production rules for each nonterminal.

5) Keijzer6 [43]: Symbolic regression of the function
f (x) = �x

i=1(1/i), with a training set of 50 points evenly
spaced in [1, 50] and a testing set of 50 points evenly
spaced in [1, 120].

6) Nguyen7 [44]: Symbolic regression of the function
f (x) = log (x + 1) + log (x2 + 1), with a training set of
20 points uniformly sampled in [0, 2].

7) Pagie1 [45]: Symbolic regression of the function
f (x, y) = (1/[1 + x−4]) + (1/[1 + y−4], with a train-
ing set of 125 points resulting from 25 values evenly
spaced in [− 5, 5] for both x and y and a testing set (as
done in [31]) of 10 000 points resulting from 100 values
evenly spaced in the same interval for both x and y.

8) Vladislavleva4 [46]: Symbolic regression of the function
f (x1, . . . , x5) = (10/[5 + �5

i=1(xi − 3)2]), with a train-
ing set of 1024 points uniformly sampled in [0.05, 6.25]5

and a testing set of 5000 points uniformly sampled in
[−0.25, 6.35]5.

For all the symbolic regression problems, the fitness is given
by the sum of the absolute errors between the target and
obtained values. Fig. 6 shows the CFGs for the nine benchmark
problems.

B. Procedure and Baselines

We performed 30 runs, by varying the random seed, for
each of the four variants (the original GE, πGE, SGE, and
WHGE) and each of the nine benchmark problems. We used
the evolutionary parameters shown in Table I.

Concerning the variant-specific parameters, we set the geno-
type size to 1024 bits for GE, πGE, and WHGE; the maximum
number of wrappings to nw = 1 for GE and πGE; the max-
imum tree depth to dmax = 6 for SGE (as suggested by
its inventors); and the maximum depth for determining the
expressive power of nonterminals to nd = 3 for WHGE
(Section III-A).

We performed the experimentation with an evolutionary
framework for grammar-based GP which we developed in
Java. The framework implements all the four variants and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CYBERNETICS

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 6. Grammars of the benchmark problems: in the symbolic regres-
sion problems, p/ and plog are the protected versions of the division and
the logarithm, respectively. (a) MOPM-3. (b) Parity-5. (c) KLandscapes-
3 and KLandscapes-7. (d) Text. (e) Keijzer6. (f) Nguyen7. (g) Pagie1.
(h) Vladislavleva4.

the nine benchmark problems and is publicly available on
Github.1

1https://github.com/ericmedvet/evolved-ge

C. Results and Discussion

In this section, we compare the fitness values achieved by
the original GE, πGE, SGE, and WHGE from several points
of view.

Table II presents the median of the fitness of the best indi-
viduals at the end of the evolution, across the 30 repetitions,
for all the different problems and variants.

It can be seen that WHGE obtains the best median fitness in
six of the nine considered benchmarks—strictly better than the
other approaches in four of them—and the second best median
fitness in each of the three remaining benchmarks. When the
WHGE is the second best performer, the difference between
the best performer is minimal in two of the three benchmarks:
2 versus 0 for Parity-5 (16 for the third performer) and 5.1
versus 5.0 for Keijzer6 (5.8 for the third performer). These
results are a strong indication, we believe, of the potential
of the proposed WHGE mapping. Indeed, we found similar
results in terms of fitness improvement with WHGE even with
genotype size shorter than 1024 bits, that is, with 128 bits [47]
and with 256 bits [48] (we refer the reader to the cited studies
for full details).

To assess the statistical significance of the results obtained,
we performed a set of tests. Initially, we applied the Lilliefors
test to verify if the data come from a normal distribution,
against the alternative that they do not come from such a dis-
tribution. The result of the test, performed with a significance
level of 5%, suggested that the alternative hypothesis cannot
be rejected. Then, we considered a rank-based statistics and
performed the Mann–Whitney U-test to verify if the samples
have equal medians, against the alternative that they have not.
In this case, the test indicated that the difference in terms of
fitness between the proposed WHGE mapping and GE, πGE,
and SGE is indeed statistically significant in several of the
benchmarks taken into account (in Table III, we used a value
of α = 0.05 with a Bonferroni correction in both the tests,
Mann–Whitney and Lilliefors). This is a further corroboration
of the findings in Table II.

Fitness values presented in Table II are graphically repre-
sented in the box plots of Fig. 7. On each box, the central
mark is the median, the edges of the box are the 25th and
75th percentiles, and the whiskers extend to the most extreme
data points not considered outliers. For the Keijzer6, Pagie1,
and Vladislavleva4 problems, there are two groups of boxes,
one associated with the input cases (as for the other prob-
lems) and another in which the best individual is assessed on
a separated testing set (these benchmarks are the only ones
for which such a testing set is available).

Further insights into the fitness values may be obtained from
Fig. 8, which shows the median fitness value of the best indi-
vidual during the evolution. While these graphs do not allow
drawing any general conclusions, it can be observed that in
most problems the initial values for WHGE tend to be better
than with GE/πGE. This finding could be explained by the
lower degeneracy of WHGE (see Section IV-D) which results
in a tendency of WHGE to better sample the phenotype space
given a random set of genotypes. In other words, WHGE might
be more robust to the population initialization procedure—a
key step in GE [49]—than GE/πGE.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BARTOLI et al.: WHGE 9

TABLE II
BEST FITNESS UPON THE LAST GENERATION, MEDIAN VALUE (Q2) AND STANDARD DEVIATION (σ) ACROSS THE 30 RUNS.

FOR EACH PROBLEM, THE BEST MEDIAN VALUE AMONG GE VARIANTS IS HIGHLIGHTED IN BOLD

Fig. 7. Box plots of the best individual upon the last generation. For the Keijzer6, Pagie1, and Vladislavleva-4 problems, there is an additional group of
boxes that describe the assessment of the best individual on a separated testing set.

Fig. 8. Best fitness during the evolution, median value across the 30 runs.

Finally, we provide in Fig. 9 a scatter plot showing the fit-
ness and the phenotype length of the best solutions obtained
in all the 30 runs that we executed. It can be seen that
WHGE tends to produce larger phenotypes than those of
the other variants. This fact could explain, in particular,
the much better fitness exhibited in MOPM-3, Parity-5, and
KLandscapes-7 with respect to the other competitors. In the
case of KLandscapes-3, on the other hand, longer phenotypes
do not result in better fitness. We believe that this result is
related to the fact that, in this specific benchmark, trees with a
depth larger than three are penalized in terms of fitness. Since
WHGE is not biased toward small phenotypes, unlike other
GE variants [27], a WHGE search will start from a region of
the search space which is, in general, farther from the optimal
solution. Thus, for KLandscapes-3, the ability of WHGE to
indeed generate fitter individuals during the search (see the

evolvability analysis in the next section) turns out to be not
sufficient to obtain good solutions. It is also interesting to
observe that in all of the considered benchmarks, SGE tends
to produce phenotypes which are much shorter and with much
smaller variance than those produced by WHGE. The ability
of WHGE to construct longer phenotypes could be crucial for
solving, for example, KLandscapes-7, more efficiently. This
fact deserves further investigation, though.

D. Mapping Properties

In this section, we analyze the mapping properties of
WHGE and of the other variants. We consider invalidity,
degeneracy, locality, evolvability (defined in Section I and
recalled in Section III-C), and neutrality (defined below).
To the best of our knowledge, this is the first comparative
assessment of all these properties for several GE variants.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 9. Fitness versus phenotype length of the best individual at the end of the evolution.

TABLE III
p-VALUES RETURNED BY THE MANN–WHITNEY U-TEST ON THE BEST

FITNESS. BOLD DENOTES STATISTICALLY SIGNIFICANT VALUES

For each of the four mapping variants and each of the nine
benchmark problems: 1) we randomly generated a set G of
10 000 genotypes and 2) we mapped each element of G into a
phenotype. We then measured invalidity as 1−(|GV |/|G|) and
degeneracy as 1−(|P|/|GV |), where P is the set of phenotypes
and GV is the subset of G containing the elements for which
the mapping did not abort.

Concerning locality: 1) we selected a subset of 10 000 pairs
of genotypes randomly chosen among the 108 pairs of G2 and
determined the corresponding pairs of phenotypes; 2) we com-
puted the genotype (Hamming distance) and phenotype (tree

edit distance with the algorithm of [50]) distances between
corresponding elements of each pair; and 3) we measured
locality, as the Pearson correlation of genotype and pheno-
type distance in the same pair (that is the same approach
as [28] and [39]). We chose to use this locality measure,
instead of one based on the (reiterated) application of the
mutation operator (as in [22] and [31]), because we deal with
different representations based on different mutation operators.

We remark that the above procedure measures invalid-
ity, degeneracy, and locality in a static context because we
attempted to exclude any factors related to the evolution
dynamics from the analysis, for example, lack of diversity in
advanced stages of the evolution [28].

The analysis of evolvability (the tendency of generating
fitter individuals during the search) and of neutrality (the com-
bined tendency of a genetic operator and a mapping procedure
to lead to the same phenotype) [25] instead requires a dynamic
context. To this end, we instrumented the evolutionary frame-
work used for the experiments in order to log, after each
genetic operator application, the genotypes, phenotypes, and
fitness values of the parents and the children. We then executed
the same experiments described in Section IV-B.

Based on the accumulated events, we measured evolvabil-
ity with the accumulated escape probability (AEP) index [39],
which essentially represents the average probability of obtain-
ing a child which is fitter than its parents. We measured
neutrality separately for each of the two genetic operators
used. For mutation, we measured neutrality as the ratio of
births in which the child phenotype is equal to the parent geno-
type and the two genotypes are different. For crossover, we
measured neutrality as the ratio of births in which the child
phenotype is equal to at least one parent phenotype and its
genotype is different from both parent genotypes.

Both evolvability and neutrality are relevant properties for
the different evolutionary algorithms, and they are not just
peculiar to GE frameworks. Several different ways for quanti-
fying these properties have been proposed, in order to capture
the different nuances of the neutrality or to adapt the measure
to the particular EA considered: for example, [51] and [52]
for evolvability and [23], [53]–[55] for neutrality. We chose
to measure evolvability with the method introduced in [56] and
later used in [39] for GE: while in [56] evolvability is used to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BARTOLI et al.: WHGE 11

TABLE IV
STATIC PROPERTIES OF THE MAPPING: INVALIDITY, DEGENERACY, AND

LOCALITY. FOR EACH PROBLEM, THE LOWEST (ALL BUT LOCALITY) OR

GREATEST (LOCALITY) VALUE IS HIGHLIGHTED IN BOLD. NAN MEANS

THAT THE PEARSON CORRELATION CANNOT BE COMPUTED, AS THE

STANDARD DEVIATION OF THE DISTANCES AMONG

PHENOTYPE IS EQUAL TO 0

TABLE V
AVERAGE NEUTRALITY AND AEP (VALUES ×100) DURING THE

EVOLUTION, MEDIAN VALUE ACROSS THE 30 RUNS FOR EACH

OF THE TWO GENETIC OPERATORS. FOR EACH PROBLEM, THE

LOWEST (NEUTRALITY) OR GREATEST (AEP) MEDIAN

VALUE IS HIGHLIGHTED IN BOLD

compare different problems tackled with the same represen-
tation, in [39] the same measure is used to compare different
representations on the same set of problems, as in this paper.

Table IV shows the results for the static context (invalidity,
degeneracy, locality), whereas Table V shows those for the
dynamic context (evolvability and neutrality, separately for the
two genetic operators).

The foremost finding from Table IV is that degeneracy in
WHGE is in general much lower than in GE/πGE; the dif-
ference is smaller with respect to SGE but still evident. Our

attempt to involve all genotype bits in determining the result-
ing phenotype (Section III-C), thus, has succeeded, at least
on the considered benchmarks. While WHGE does improve
over GE and πGE in terms of locality, SGE has even better
locality.

It is perhaps more interesting to observe that WHGE and
SGE exhibit a sort of specular behavior in terms of degener-
acy and locality: WHGE tends to exhibit the best degeneracy
among all the variants, while SGE tends to exhibit the best
locality. Furthermore, the only benchmark in which SGE has
better degeneracy than WHGE (Parity-5) is also one of the
two benchmarks in which SGE manages to deliver a fitness
better than WHGE (Table II), the difference being negligible
in both the fitness and the degeneracy. In our experimental
setting, thus, degeneracy seems to be more correlated with
solution effectiveness than locality. As we have observed in
Section III-C, though, a principle framework for using map-
ping properties as a proxy for predicting, or justifying, solution
effectiveness is still lacking [33], [34].

Another interesting finding concerns the invalidity, an unde-
sirable property which is, by design, equal to 0 in WHGE, as
well as in SGE. We remark, however, that null invalidity is
obtained in SGE by requiring the user to set a maximum
depth for the derivations while mapping the genotype into
phenotypes; in our WHGE, this requirement is not present.

Table V indicates clearly that WHGE exhibits a better evolv-
ability than the other variants. The only exception is for the
crossover operator in three benchmarks, in which WHGE is
second-ranked and SGE is first-ranked. The improvement over
both GE and πGE is significant in all benchmarks. Indeed, our
observations of high evolvability, low degeneracy, and good
solution quality are consistent with the findings of [39]. It
is interesting to observe the good evolvability of SGE for the
crossover operator. We interpret this result as a consequence of
the coupling between the structure of SGE genotype and pecu-
liarities of SGE crossover. Table V also indicates that WHGE
exhibits a better neutrality than the other variants, again with
the exception of three benchmarks for the crossover operator
in which SGE is first-ranked and WHGE is second-ranked.
The improvement over both GE and πGE is significant in all
cases.

V. CONCLUSION

Imposing a structure on the genotype may have highly
beneficial effects over the genotype–phenotype mapping in
GE, as advocated and demonstrated by the recent proposal
SGE. In this paper, we have proposed a novel mapping for
GE which imposes a form of hierarchy on the genotype and
encodes grammar symbols with a varying number of bits
based on the relative expressive power of those symbols. The
proposed WHGE mapping does not impose any constraint on
the overall GE framework, in particular, WHGE may handle
recursive grammars, uses the classical genetic operators, and
does not need to define any bound in advance on the size of
phenotypes.

We assessed experimentally our proposal in depth consid-
ering a set of benchmarks selected based on the guidelines

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON CYBERNETICS

for the evaluation of GP approaches. Our results showed that
WHGE obtains the best median fitness in six of the nine con-
sidered benchmarks (strictly better than the other approaches
in four of them); it is the second-best performer in each of the
three remaining benchmarks, with a minimal difference with
respect to the best performer in two of the three benchmarks.

We also investigated several mapping properties, both static
(invalidity, degeneracy, locality) and dynamic (evolvability,
neutrality). Results showed that WHGE exhibits much better
properties than GE and πGE; WHGE tends to exhibit better
degeneracy, evolvability, and neutrality than SGE, while SGE
exhibits better locality. Although this analysis does not pro-
vide any ultimate answer to the research question of relating
the properties of a mapping to the quality of solutions, it does
provide useful insights in this respect.

Overall, we believe that the experimental results provide
strong indications of the potential of the proposed WHGE
mapping.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their numerous and insightful comments.

REFERENCES

[1] C. Ryan, J. Collins, and M. O’Neill, Grammatical Evolution: Evolving
Programs for an Arbitrary Language. Heidelberg, Germany: Springer,
1998, pp. 83–96.

[2] M. O’Neill and C. Ryan, “Grammatical evolution,” IEEE Trans. Evol.
Comput., vol. 5, no. 4, pp. 349–358, Aug. 2001.

[3] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection, vol. 1. Cambridge, MA, USA: MIT
Press, 1992.

[4] I. Dempsey, M. O’Neill, and A. Brabazon, Foundations in Grammatical
Evolution for Dynamic Environments, vol. 194. Heidelberg, Germany:
Springer, 2009.

[5] J. Hugosson, E. Hemberg, A. Brabazon, and M. O’Neill, “An inves-
tigation of the mutation operator using different representations in
grammatical evolution,” in Proc. 2nd Int. Symp. Adv. Artif. Intell. Appl.,
vol. 2, 2007, pp. 409–419.

[6] R. I. Mckay, N. X. Hoai, P. A. Whigham, Y. Shan, and M. O’Neill,
“Grammar-based genetic programming: A survey,” Genet. Program.
Evol. Mach., vol. 11, nos. 3–4, pp. 365–396, 2010.

[7] A. Brabazon, M. O’Neill, and S. McGarraghy, Natural Computing
Algorithms. Heidelberg, Germany: Springer, 2015.

[8] A. O. de la Puente, R. S. Alfonso, and M. A. Moreno, “Automatic com-
position of music by means of grammatical evolution,” ACM SIGAPL
APL Quote Quad, vol. 32, no. 4, pp. 148–155, Jun. 2002.

[9] E. Medvet, A. Bartoli, and J. Talamini, “Road traffic rules synthesis
using grammatical evolution,” in Proc. EvoApplications, vol. 2, 2017,
pp. 173–188.

[10] A. Bartoli, A. De Lorenzo, E. Medvet, and F. Tarlao, “Syntactical sim-
ilarity learning by means of grammatical evolution,” in Proc. 14th Int.
Conf. Parallel Prob. Solving Nat. (PPSN XIV), Sep. 2016, pp. 260–269.

[11] M. Fenton et al., “Discrete planar truss optimization by node posi-
tion variation using grammatical evolution,” IEEE Trans. Evol. Comput.,
vol. 20, no. 4, pp. 577–589, Aug. 2016.

[12] P. B. C. Miranda and R. B. C. Prudêncio, “Generation of particle
swarm optimization algorithms: An experimental study using grammar-
guided genetic programming,” Appl. Soft Comput., vol. 60, pp. 281–296,
Nov. 2017.

[13] C. Ryan, A. Azad, A. Sheahan, and M. O’Neill, “No coercion and no
prohibition, a position independent encoding scheme for evolutionary
algorithms—The chorus system,” in Proc. Eur. Conf. Genet. Program.,
2002, pp. 131–141.

[14] L. Georgiou and W. J. Teahan, “Constituent grammatical evolution,” in
Proc. Int. Joint Conf. Artif. Intell. (IJCAI), vol. 22, 2011, p. 1261.

[15] H.-T. Kim and C. W. Ahn, “UMBGE: Univariate model based
grammatical evolution,” J. Comput. Theor. Nanosci., vol. 13, no. 7,
pp. 4104–4110, 2016.

[16] M. O’Neill, A. Brabazon, M. Nicolau, S. M. Garraghy, and
P. Keenan, πGrammatical Evolution. Heidelberg, Germany: Springer,
2004, pp. 617–629.

[17] N. Lourenço, F. B. Pereira, and E. Costa, “SGE: A structured represen-
tation for grammatical evolution,” in Proc. Int. Conf. Artif. Evol., 2015,
pp. 136–148.

[18] J. McDermott et al., “Genetic programming needs better benchmarks,” in
Proc. 14th ACM Annu. Conf. Genet. Evol. Comput., 2012, pp. 791–798.

[19] D. R. White et al., “Better GP benchmarks: Community survey results
and proposals,” Genet. Program. Evol. Mach., vol. 14, no. 1, pp. 3–29,
2013.

[20] F. Rothlauf and D. E. Goldberg, “Redundant representations in evo-
lutionary computation,” Evol. Comput., vol. 11, no. 4, pp. 381–415,
Dec. 2003.

[21] F. Rothlauf, “Representations for genetic and evolutionary algorithms,”
in Representations for Genetic and Evolutionary Algorithms. Heidelberg,
Germany: Springer, 2006, pp. 9–32.

[22] F. Rothlauf and M. Oetzel, “On the locality of grammatical evolution,”
in Proc. Eur. Conf. Genet. Program., 2006, pp. 320–330.

[23] D. Wilson and D. Kaur, “Search, neutral evolution, and mapping in
evolutionary computing: A case study of grammatical evolution,” IEEE
Trans. Evol. Comput., vol. 13, no. 3, pp. 566–590, Jun. 2009.

[24] T. Castle and C. G. Johnson, “Positional effect of crossover and mutation
in grammatical evolution,” in Proc. Eur. Conf. Genet. Program., 2010,
pp. 26–37.

[25] M. B. Correia, “A study of redundancy and neutrality in evolutionary
optimization,” Evol. Comput., vol. 21, no. 3, pp. 413–443, 2013.

[26] A. Thorhauer and F. Rothlauf, “On the locality of standard search opera-
tors in grammatical evolution,” in Proc. Int. Conf. Parallel Prob. Solving
Nat., 2014, pp. 465–475.

[27] A. Thorhauer, “On the non-uniform redundancy in grammatical evolu-
tion,” in Proc. Int. Conf. Parallel Prob. Solving Nat., 2016, pp. 292–302.

[28] E. Medvet, “A comparative analysis of dynamic locality and redundancy
in grammatical evolution,” in Proc. Genet. Program. 20th Eur. Conf.
(EuroGP), Apr. 2017, pp. 326–342.

[29] E. Medvet, “Hierarchical grammatical evolution,” in Proc. Genet. Evol.
Comput. Conf. (GECCO), 2017, pp. 249–250.

[30] D. Fagan, M. O’Neill, E. Galván-López, A. Brabazon, and
S. McGarraghy, “An analysis of genotype-phenotype maps in grammat-
ical evolution,” in Proc. Eur. Conf. Genet. Program., 2010, pp. 62–73.

[31] N. Lourenço, F. B. Pereira, and E. Costa, “Unveiling the properties
of structured grammatical evolution,” Genet. Program. Evol. Mach.,
vol. 17, no. 3, pp. 251–289, 2016.

[32] N. Lourenço, J. Ferrer, F. B. Pereira, and E. Costa, “A comparative study
of different grammar-based genetic programming approaches,” in Proc.
Eur. Conf. Genet. Program., 2017, pp. 311–325.

[33] L. Altenberg, “Probing the axioms of evolutionary algorithm design:
Commentary on ‘on the mapping of genotype to phenotype in evo-
lutionary algorithms’ by Peter A. Whigham, Grant Dick, and James
Maclaurin,” Genet. Program. Evol. Mach., vol. 18, no. 3, pp. 363–367,
2017.

[34] E. Medvet and A. Bartoli, “On the automatic design of a representa-
tion for grammar-based genetic programming,” in Genetic Programming,
M. Castelli, L. Sekanina, M. Zhang, S. Cagnoni, and P. García-Sánchez,
Eds. Cham, Switzerland: Springer Int., 2018, pp. 101–117.

[35] A. Bartoli, A. De Lorenzo, E. Medvet, and F. Tarlao, “Active learning of
regular expressions for entity extraction,” IEEE Trans. Cybern., vol. 48,
no. 3, pp. 1067–1080, Mar. 2018.

[36] A. Bartoli, A. De Lorenzo, E. Medvet, and F. Tarlao, “Inference of reg-
ular expressions for text extraction from examples,” IEEE Trans. Knowl.
Data Eng., vol. 28, no. 5, pp. 1217–1230, May 2016.

[37] N. J. Radcliffe and P. D. Surry, “Fitness variance of formae and
performance prediction,” Found. Genet. Algorithms, vol. 3, pp. 51–72,
1995. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/B9781558603561500078

[38] M. O’Neill and C. Ryan, “Genetic code degeneracy: Implications for
grammatical evolution and beyond,” in Proc. Eur. Conf. Artif. Life, 1999,
pp. 149–153.

[39] E. Medvet, F. Daolio, and D. Tagliapietra, “Evolvability in grammatical
evolution,” in Proc. ACM Genet. Evol. Comput. Conf. (GECCO), 2017,
pp. 977–984.

[40] E. Medvet and T. Tušar, “The DU map: A visualization to gain insights
into genotype-phenotype mapping and diversity,” in Proc. Genet. Evol.
Comput. Conf. Companion (GECCO), 2017, pp. 1705–1712.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BARTOLI et al.: WHGE 13

[41] J. A. Walker and J. F. Miller, “The automatic acquisition, evolution and
reuse of modules in cartesian genetic programming,” IEEE Trans. Evol.
Comput., vol. 12, no. 4, pp. 397–417, Aug. 2008.

[42] L. Vanneschi, M. Castelli, and L. Manzoni, “The K landscapes: A tun-
ably difficult benchmark for genetic programming,” in Proc. ACM 13th
Annu. Conf. Genet. Evol. Comput., 2011, pp. 1467–1474.

[43] M. Keijzer, “Improving symbolic regression with interval arithmetic and
linear scaling,” in Proc. Genet. Program., 2003, pp. 275–299.

[44] N. Q. Uy, N. X. Hoai, M. O’Neill, R. I. McKay, and E. Galván-López,
“Semantically-based crossover in genetic programming: Application to
real-valued symbolic regression,” Genet. Program. Evol. Mach., vol. 12,
no. 2, pp. 91–119, 2011.

[45] L. Pagie and P. Hogeweg, “Evolutionary consequences of coevolving
targets,” Evol. Comput., vol. 5, no. 4, pp. 401–418, 1997.

[46] E. J. Vladislavleva, G. F. Smits, and D. Den Hertog, “Order of nonlinear-
ity as a complexity measure for models generated by symbolic regression
via Pareto genetic programming,” IEEE Trans. Evol. Comput., vol. 13,
no. 2, pp. 333–349, Apr. 2009.

[47] A. Bartoli, A. De Lorenzo, E. Medvet, and F. Tarlao, “GOMGE: Gene-
pool optimal mixing on grammatical evolution,” in Proc. Int. Conf.
Parallel Prob. Solving Nat., 2018, pp. 223–235.

[48] E. Medvet, A. Bartoli, A. De Lorenzo, and F. Tarlao, “Designing auto-
matically a representation for grammatical evolution,” in Proc. Genet.
Program. Evol. Mach., 2018, pp. 1–29.

[49] M. Nicolau, “Understanding grammatical evolution: Initialisation,”
Genet. Program. Evol. Mach., vol. 18, no. 4, pp. 467–507, Jul. 2017.

[50] M. Pawlik and N. Augsten, “Efficient computation of the tree edit
distance,” ACM Trans. Database Syst., vol. 40, no. 1, p. 3, 2015.

[51] M. Tomassini, L. Vanneschi, P. Collard, and M. Clergue, “A study of
fitness distance correlation as a difficulty measure in genetic program-
ming,” Evol. Comput., vol. 13, no. 2, pp. 213–239, Jun. 2005.

[52] H. Mengistu, J. Lehman, and J. Clune, “Evolvability search: Directly
selecting for evolvability in order to study and produce it,” in Proc.
ACM Genet. Evol. Comput. Conf. (GECCO), 2016, pp. 141–148.

[53] E. Galván-López and R. Poli, “An empirical investigation of how and
why neutrality affects evolutionary search,” in Proc. ACM 8th Annu.
Conf. Genet. Evol. Comput., 2006, pp. 1149–1156.

[54] W. Banzhaf and A. Leier, “Evolution on neutral networks in genetic
programming,” in Proc. Genet. Program. Theory Pract. III, 2006,
pp. 207–221.

[55] E. Galván-López, R. Poli, A. Kattan, M. O’Neill, and A. Brabazon,
“Neutrality in evolutionary algorithms... What do we know?” Evol. Syst.,
vol. 2, no. 3, pp. 145–163, Sep. 2011.

[56] G. Lu, J. Li, and X. Yao, “Fitness-probability cloud and a measure of
problem hardness for evolutionary algorithms,” in Proc. Eur. Conf. Evol.
Comput. Comb. Optim., 2011, pp. 108–117.

Alberto Bartoli received the master’s degree (cum
laude) in electrical engineering and the Ph.D.
degree in computer engineering from the University
of Pisa, Pisa, Italy, in 1989 and 1993, respectively.

Since 1998, he has been an Associate
Professor with the Department of Engineering
and Architecture, University of Trieste, Trieste,
Italy, where he is the Director of the Machine
Learning Laboratory. His current research interests
include machine learning applications, evolutionary
computing, and security.

Mauro Castelli received the master’s (summa cum
laude) and Ph.D. degrees from the University of
Milano-Bicocca, Milan, Italy, in 2008 and 2012,
respectively, both in computer science.

He is an Assistant Professor with NOVA IMS,
Universidade Nova de Lisboa, Lisbon, Portugal. His
current research interests include artificial intelli-
gence (in particular, evolutionary computation and
genetic programming) and in the application of
machine learning techniques to solve complex real-
life problems, especially in the field of biology and
medicine.

Eric Medvet received the master’s degree (cum
laude) in electronic engineering and the Ph.D. degree
in computer engineering from the University of
Trieste, Trieste, Italy, in 2004 and 2008, respec-
tively.

He is currently an Assistant Professor of computer
engineering with the Department of Engineering
and Architecture, University of Trieste. His current
research interests include genetic programming and
machine learning applications, in particular, con-
cerning Android malware detection and information
retrieval.

